### II. Influent and Effluent Data Summary.

The results of all analyses performed on the WWRP influent and effluent are summarized in tables with monthly and annual averages (and in some cases annual totals) calculated. Graphs of monthly averages are presented.

- A. Influent and Effluent Data Summaries
- B. Influent and Effluent Graphs
- C. Daily Values of Selected Parameters
- D. Toxicity Report

Mass Emissions of Effluent Using 2006 Monthly Averages
DISCHARGE SPECIFICATIONS from NPDES Permit No. CA0109045/RWQCB Order No. 2000-129 effective on September 13, 2000 with limits on pollutant discharges.

### Effluent Limitations for Major Constituents and Properties of Wastewater

|                        | Limit: Monthly<br>Average (30<br>day) | 2006<br>Mass<br>Emissions | 2006<br>Average<br>Concentration |       |
|------------------------|---------------------------------------|---------------------------|----------------------------------|-------|
| Constituent/Property   | (lbs/day)                             | (lbs/day) <sup>[1]</sup>  |                                  | Units |
| Flow (MGD)             |                                       |                           | 4.95                             | MGD   |
| Total Suspended Solids | 3,750                                 | 57                        | 1.39                             | mg/L  |
| BOD                    | 3,750                                 | 101                       | 2.44                             | mg/L  |
| Oil & Grease           | 3,130                                 | 54                        | 1.3                              | mg/L  |

| Effluent Limitations on Toxic Materials for Protection of Marine Aquatic Life |                            |                           |                                  |       |  |  |  |  |  |
|-------------------------------------------------------------------------------|----------------------------|---------------------------|----------------------------------|-------|--|--|--|--|--|
|                                                                               | Limit:<br>Daily<br>Maximum | 2006<br>Mass<br>Emissions | 2006<br>Average<br>Concentration |       |  |  |  |  |  |
| Constituent/Property                                                          | (lbs/day)                  | (lbs/day) <sup>[1]</sup>  |                                  | Units |  |  |  |  |  |
| Arsenic                                                                       | 363                        | 0.012                     | 0.28                             | ug/L  |  |  |  |  |  |
| Cadmium                                                                       | 50                         | 0.004                     | 0.1                              | ug/L  |  |  |  |  |  |
| Chromium                                                                      | 100                        | 0.017                     | 0.4                              | ug/L  |  |  |  |  |  |
| Copper                                                                        | 125                        | 0.4                       | 10                               | ug/L  |  |  |  |  |  |
| Lead                                                                          | 100                        | 0.0                       | 0.4                              | ug/L  |  |  |  |  |  |
| Mercury                                                                       | 2                          | 0.0                       | 0                                | ug/L  |  |  |  |  |  |
| Nickel                                                                        | 250                        | 0.18                      | 4.41                             | ug/L  |  |  |  |  |  |
| Selenium                                                                      | 760                        | 0.023                     | 0.56                             | ug/L  |  |  |  |  |  |
| Silver                                                                        | 21                         | 0.008                     | 0.2                              | ug/L  |  |  |  |  |  |
| Zinc                                                                          | 910                        | 1.4                       | 32.7                             | ug/L  |  |  |  |  |  |
| Cyanide                                                                       | 50                         | 0.025                     | 0.0006                           | mg/L  |  |  |  |  |  |
| Residual Chlorine                                                             | 100                        | 0.0                       | 0                                | mg/L  |  |  |  |  |  |
| Ammonia                                                                       | 30,000                     | 4.1                       | 0.1                              | mg/L  |  |  |  |  |  |
| Non-Chor. Phenols                                                             | 1,500                      | 0.0                       | 0                                | ug/L  |  |  |  |  |  |
| Chlorinated Phenols                                                           | 50                         | 0.0                       | 0                                | ug/L  |  |  |  |  |  |
| Endosulfan                                                                    | 0.22                       | 0.0                       | 0                                | ng/L  |  |  |  |  |  |
| Endrin                                                                        | 0.05                       | 0.0                       | 0                                | ng/L  |  |  |  |  |  |
| hexachlorocyclohexanes  *(HCH)  * (all as Lindane, the gamma                  | 0.1                        | 0.0006                    | 15                               | ng/L  |  |  |  |  |  |
| 1. \- \                                                                       |                            |                           | l                                |       |  |  |  |  |  |

isomer)

| Effluent Limitations for Toxic, Non-carcinogenic Materials for Protection of Human<br>Health |                            |                                       |                 |       |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|-----------------|-------|--|--|--|--|--|
|                                                                                              | Limit:<br>Daily<br>Maximum | 2006<br>Mass                          | 2006<br>Average |       |  |  |  |  |  |
| Constituent/Property                                                                         | (lbs/day)                  | Emissions<br>(lbs/day) <sup>[1]</sup> | Concentration   | Units |  |  |  |  |  |
| Acrolein                                                                                     | 2,750                      | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Antimony                                                                                     | 15,010                     | 0.00                                  | 0               | ug/L  |  |  |  |  |  |
| Bis(2-chloroethoxy) methane                                                                  | 55                         | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Bis(2-chloroisopropyl) ether                                                                 | 15,010                     | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Chlorobenzene                                                                                | 7,250                      | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Chromium (III)                                                                               |                            |                                       |                 |       |  |  |  |  |  |
| di-n-butyl phthalate                                                                         | 43,800                     | 0                                     | 0               | ug/L  |  |  |  |  |  |
| dichlorobenzenes                                                                             | 65,000                     | 0                                     | 0               | ug/L  |  |  |  |  |  |
| 1,1-dichloroethylene                                                                         | 90,000                     | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Diethyl phthalate                                                                            | 412,000                    | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Dimethyl phthalate                                                                           | 10,400,000                 | 0                                     | 0               | ug/L  |  |  |  |  |  |
| 4,6-dinitro-2-methylphenol                                                                   | 2,750                      | 0                                     | 0               | ug/L  |  |  |  |  |  |
| 2,4-dinitrophenol                                                                            | 50                         | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Ethylbenzene                                                                                 | 51,300                     | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Fluoranthene                                                                                 | 188                        | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Hexachlorocyclopentadiene                                                                    | 740                        | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Isophorone                                                                                   | 1,880,000                  | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Nitrobenzene                                                                                 | 61                         | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Thallium                                                                                     | 175                        | 0                                     | 0.4             | ug/L  |  |  |  |  |  |
| Toluene                                                                                      | 1,060,000                  | 0                                     | 0               | ug/L  |  |  |  |  |  |
| 1,1,2,2-tetrachloroethane                                                                    | 15,000                     | 0                                     | 0               | ug/L  |  |  |  |  |  |
| Tributyltin                                                                                  | 0.017                      | 0                                     | 0               | ug/L  |  |  |  |  |  |
| 1,1,1-trichloroethane                                                                        | 6,750,000                  | 0                                     | 0               | ug/L  |  |  |  |  |  |
| 1,1,2-trichloroethane                                                                        | 540,000                    | 0                                     | 0               | ug/L  |  |  |  |  |  |

| Effluent Limitations for Toxic, Carcinogenic Materials for Protection of Human Health |                                       |                           |                       |       |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------|---------------------------|-----------------------|-------|--|--|--|--|--|--|
|                                                                                       | Limit: Monthly<br>Average (30<br>day) | 2006<br>Mass<br>Emissions | 2006<br>Concentration |       |  |  |  |  |  |  |
| Constituent/Property                                                                  | (lbs/day)                             | (lbs/day) <sup>[1]</sup>  | _                     | Units |  |  |  |  |  |  |
| Acrylonitrile                                                                         | 1.25                                  | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Aldrin                                                                                | 0.00027                               | 0                         | 0                     | ng/L  |  |  |  |  |  |  |
| Benzene                                                                               | 74                                    | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Benzidine                                                                             | 0.00086                               | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Beryllium                                                                             | 0.41                                  | 0.0                       | 0.0003                | ug/L  |  |  |  |  |  |  |
| Bis(2-chloroethyl)ether                                                               | 0.56                                  | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Bis(2-ethylhexyl)phthalate                                                            | 43.8                                  | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Carbon Tetrachloride                                                                  | 11.2                                  | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Chlordane                                                                             | 0.00028                               | 0                         | 0                     | ng/L  |  |  |  |  |  |  |
| Chloroform                                                                            | 1,626                                 | 0.00                      | 0.06                  | ug/L  |  |  |  |  |  |  |
| DDT                                                                                   | 0.00026                               | 0                         | 0                     | ng/L  |  |  |  |  |  |  |
| 1,4-dichlorobenzene                                                                   | 225                                   | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| 3,3-dichlorobenzidine                                                                 | 0.1                                   | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| 1,2-dichloroethane                                                                    | 1,626                                 | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Dichloromethane                                                                       | 5,630                                 | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| (methylene chloride)                                                                  |                                       |                           |                       |       |  |  |  |  |  |  |
| 1,3-dichloropropene                                                                   | 111                                   | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Dieldrin                                                                              | 0.0005                                | 0                         | 0                     | ng/L  |  |  |  |  |  |  |
| 2,4-dinitrotoluene                                                                    | 32.5                                  | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| 1,2-diphenylhydrazine                                                                 | 2                                     | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Halomethanes                                                                          | 1,620                                 | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Heptachlor                                                                            | 0.0009                                | 0                         | 0                     | ng/L  |  |  |  |  |  |  |
| Heptachlor epoxide                                                                    | -                                     | 0                         | 0                     | ng/L  |  |  |  |  |  |  |
| Hexachlorobenzene                                                                     | 0.0026                                | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Hexachlorobutadiene                                                                   | 175                                   | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Hexachloroethane                                                                      | 31                                    | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| N-nitrosodimethylamine                                                                | 92                                    | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| N-nitrosodiphenylamine                                                                | 31                                    | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| PAHs                                                                                  | 0.11                                  | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| PCBs                                                                                  | 0.00024                               | 0                         | 0                     | ng/L  |  |  |  |  |  |  |
| TCDD equivalents                                                                      | 0.000000048                           | 0                         | 0                     | pg/L  |  |  |  |  |  |  |
| Tetrachloroethylene                                                                   | 1240                                  | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Toxaphene                                                                             | 0.0026                                | 0                         | 0                     | ng/L  |  |  |  |  |  |  |
| Trichloroethylene                                                                     | 337                                   | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| 2,4,6-trichlorophenol                                                                 | 3.6                                   | 0                         | 0                     | ug/L  |  |  |  |  |  |  |
| Vinyl Chloride                                                                        | 450                                   | 0                         | 0                     | ug/L  |  |  |  |  |  |  |

<sup>[1]</sup> Metric tons of mass emissions is calculated assuming the density of effluent is 1. The mean constituent value and mean daily flow value over the year is used to compute the mass emissions, assuming that constant concentration over 365 days.

### A. Influent and Effluent Data Summaries

The results of all analyses performed on the SBWRP influent and effluent are summarized in tables with monthly and annual averages (and in some cases annual totals) calculated.

#### SEWAGE ANNUAL

From 01-JAN-2006 To 31-DEC-2006

### Biochemical Oxygen Demand Concentration (24-hour composite)

|                | Influent<br>Flow | Value  | Influent | Effluent<br>Flow | Daily<br>Effluent<br>Value<br>(mg/L)( | Daily<br>Effluent<br>Value<br>lbs/Day) | Percent<br>Removal<br>BOD<br>(%) |
|----------------|------------------|--------|----------|------------------|---------------------------------------|----------------------------------------|----------------------------------|
|                |                  | , 5. , |          | =======          | . 5                                   |                                        | ======                           |
| JANUARY -2006  | 4.2              | 303    | 10613    | 3.7              | <2.0                                  | 0                                      | 100.0                            |
| FEBRUARY -2006 | 4.2              | 268    | 9388     | 3.6*             | 7.4*                                  | 227*                                   | 97.1*                            |
| MARCH -2006    | 4.2              | 243    | 8512     | 3.7              | 2.0                                   | 62                                     | 99.2                             |
| APRIL -2006    | 4.3              | 260    | 9324     | 3.7              | 2.0                                   | 62                                     | 99.2                             |
| MAY -2006      | 5.0              | 273    | 11384    | 4.3              | <2.0                                  | 0                                      | 100.0                            |
| JUNE -2006     | 5.0              | 263    | 10967    | 5.2              | 4.9                                   | 213                                    | 98.1                             |
| JULY -2006     | 5.5              | 267    | 12247    | 4.0              | <2.0                                  | 0                                      | 100.0                            |
| AUGUST -2006   | 6.4              | 288    | 15372    | 5.1              | <2.0                                  | 0                                      | 100.0                            |
| SEPTEMBER-2006 | 7.8              | 298    | 19385    | 5.9              | <2.0                                  | 0                                      | 100.0                            |
| OCTOBER -2006  | 8.8              | 348    | 25540    | 6.8              | 3.3                                   | 187                                    | 99.1                             |
| NOVEMBER -2006 | 8.9              | 325    | 24123    | 6.7              | 3.0                                   | 168                                    | 99.1                             |
| DECEMBER -2006 | 8.6              | 289    | 20728    | 6.6              | 4.7                                   | 259                                    | 98.4                             |
| =========      | =======          |        |          |                  | =======                               |                                        | ======                           |
| Average        | 6.1              | 285    | 14799    | 4.9              | 2.6                                   | 108                                    | 99.1                             |

\* = February monthly average values were calculated based on two different sources. The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as an alternative compliance monitoring point. The February SB\_OUTFALL\_00 data from February 1,2,25,26,27 and 28 were the only data points utilized in the annual average. The data from SB\_SEC\_EFF\_29 collected from February 5 thru the 23 was not included in annual average, although it is included in the calculation of the shown monthly average for February. For comparision February 2006 analytical data for these two sampling points can be referenced in the following table.

### Biochemical Oxygen Demand Concentration (24-hour composite)

|                |               | Daily    | Daily     | Percent |
|----------------|---------------|----------|-----------|---------|
|                |               | Effluent | Effluent  | Removal |
|                |               | Value    | Value     | BOD     |
|                | Source        | (mg/L)   | (lbs/Day) | (%)     |
| =========      | =========     | =======  |           | ======= |
| FEBRUARY -2006 | SB_SEC_EFF_29 | 6.1      | 183       | 97.7    |
| FEBRUARY -2006 | SB_OUFALL_00  | 11.3     | 339       | 95.8    |
| =========      | ==========    | ======== |           | ======= |

Annual Mass Emissions are calculated from monthly averages of flow and BOD, wheras Monthly Report average mass emissions are calculated from average daily mass emissions.

#### SEWAGE ANNUAL

From 01-JAN-2006 To 31-DEC-2006

Total Suspended Solids Concentration (24-hour composite)

|                |          | Daily    | Daily    |         | Daily     |
|----------------|----------|----------|----------|---------|-----------|
|                |          | Influent | Influent | Percent | Influent  |
|                | Influent | Value    | Volitile | VSS     | Value     |
|                | Flow     | (mg/L)   | (mg/L)   | (%)     | (lbs/Day) |
|                | ======== |          |          |         |           |
| JANUARY -2006  | 4.2      | 253      | 224      | 88.5    | 8862      |
| FEBRUARY -2006 | 4.2      | 234      | 205      | 87.6    | 8197      |
| MARCH -2006    | 4.2      | 199      | 172      | 86.4    | 6971      |
| APRIL -2006    | 4.3      | 200      | 172      | 86.0    | 7172      |
| MAY -2006      | 5.0      | 211      | 187      | 88.6    | 8799      |
| JUNE -2006     | 5.0      | 218      | 187      | 85.8    | 9091      |
| JULY -2006     | 5.5      | 235      | 209      | 88.9    | 10779     |
| AUGUST -2006   | 6.4      | 248      | 215      | 86.7    | 13237     |
| SEPTEMBER-2006 | 7.8      | 258      | 227      | 88.0    | 16783     |
| OCTOBER -2006  | 8.8      | 255      | 225      | 88.2    | 18715     |
| NOVEMBER -2006 | 8.9      | 295      | 262      | 88.8    | 21897     |
| DECEMBER -2006 | 8.6      | 259      | 227      | 87.6    | 18577     |
|                | ======== |          |          |         |           |
| Average        | 6.1      | 239      | 209      |         | 12423     |

Annual Mass Emissions are calculated from monthly averages of flow and TSS, wheras Monthly Report average mass emissions are calculated from average daily mass emissions.

#### SEWAGE ANNUAL

From 01-JAN-2006 To 31-DEC-2006

### Total Suspended Solids Concentration (24-hour composite)

|                | Effluent<br>Flow |      | Daily<br>Effluent<br>Volitile<br>(mg/L) | Percent E:<br>VSS<br>(%)(1) | Daily<br>ffluent<br>Value<br>bs/Day) | Percent<br>Removal<br>TSS<br>(%) | Percent<br>Removal<br>VSS<br>(%) |
|----------------|------------------|------|-----------------------------------------|-----------------------------|--------------------------------------|----------------------------------|----------------------------------|
| JANUARY -2006  | 3.7              | <1.6 | <1.6                                    | #                           | 0                                    | 100.0                            | 100.0                            |
| FEBRUARY -2006 | 3.6              | 5.7  |                                         | 82.5*                       | 171*                                 | 97.6*                            | 97.7*                            |
| MARCH -2006    | 3.7              | <1.6 | <1.6                                    | #                           | 0                                    | 100.0                            | 100.0                            |
| APRIL -2006    | 3.7              | <1.6 | <1.6                                    | #                           | 0                                    | 100.0                            | 100.0                            |
| MAY -2006      | 4.3              | <1.6 | <1.6                                    | #                           | 0                                    | 100.0                            | 100.0                            |
| JUNE -2006     | 5.2              | 4.0  | 3.3                                     | 82.5                        | 173                                  | 98.2                             | 98.2                             |
| JULY -2006     | 4.0              | <1.6 | <1.6                                    | #                           | 0                                    | 100.0                            | 100.0                            |
| AUGUST -2006   | 5.1              | <1.6 | <1.6                                    | #                           | 0                                    | 100.0                            | 100.0                            |
| SEPTEMBER-2006 | 5.9              | <1.6 | <1.6                                    | #                           | 0                                    | 100.0                            | 100.0                            |
| OCTOBER -2006  | 6.8              | 2.0  | <1.6                                    | 0.0                         | 113                                  | 99.2                             | 100.0                            |
| NOVEMBER -2006 | 6.7              | 2.1  | <1.6                                    | 0.0                         | 117                                  | 99.3                             | 100.0                            |
| DECEMBER -2006 | 6.6              | 3.9  | 3.4                                     | 87.2                        | 215                                  | 98.5                             | 98.5                             |
| =========      | ========         |      |                                         |                             |                                      | =======                          | ======                           |
| Average        | 4.9              | 1.4  | 0.9                                     |                             | 63                                   | 99.4                             | 99.6                             |

<sup>\* =</sup> February monthly average values were calculated based on two different sources. The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as an alternative compliance monitoring point. The February SB\_OUTFALL\_00 data from February 1,2,25,26,27 and 28 were the only data points utilized in the annual average. The data from SB\_SEC\_EFF\_29 collected from February 5 thru the 23 was not included in annual average, although it is included in the calculation of the shown monthly average for February. For comparision February 2006 analytical data for these two sampling points can be referenced in the following table.

### # = Values too low to calculate ratio, ie. <MDL</pre>

### Total Suspended Solids Concentration (24-hour composite)

|                |               |          | Daily    | Daily    | Daily   | _         |         | Percent |
|----------------|---------------|----------|----------|----------|---------|-----------|---------|---------|
|                |               |          | Effluent | Effluent | Percent | Effluent  | Removal | Removal |
|                |               | Effluent | Value    | Volitile | VSS     | Value     | TSS     | VSS     |
|                | Source        | Flow     | (mg/L)   | (mg/L)   | (%)     | (lbs/Day) | (%)     | (%)     |
| =========      | ==========    | =====    | =======  | =======  | ======= | =======   | ======= | ======= |
| FEBRUARY -2006 | SB_SEC_EFF_29 | 3.6      | 6.2      | 5.2      | 83.9    | 186       | 97.4    | 97.5    |
| FEBRUARY -2006 | SB_OUTFALL_00 | 3.6      | 4.5      | 3.6      | 80.0    | 135       | 98.1    | 98.2    |

Annual Mass Emissions are calculated from monthly averages of flow and TSS, wheras Monthly Report average mass emissions are calculated from average daily mass emissions.

nd=not detected; NS=not sampled; NA=not analyzed

The limit is 85% removal on daily running averages.

#### From 01-JAN-2006 To 31-DEC-2006

### Effluent to Ocean Outfall (SB OUTFALL 00)

|           |        |         |         |            | Total     | Oil     |             |          |           |           |
|-----------|--------|---------|---------|------------|-----------|---------|-------------|----------|-----------|-----------|
|           |        |         |         | Settleable | Dissolved | &       | Outfall     | Residual |           | Dissolved |
|           |        | Flow    | Нq      | Solids     | Solids    | Grease  | Temperature | Chlorine | Turbidity | Oxygen    |
|           |        | (mgd)   |         | (ml/L)     | (mg/L)    | (mg/L)  | ( C )       | (mg/L)   | (NTU)     | (mg/L)    |
| Limit:    |        |         |         |            |           |         |             |          |           |           |
| =======   | =====  | ======= | ======= | =======    | =======   | ======= | =======     | =======  | =======   | =======   |
| JANUARY   | -2006  | 3.72    | 7.46    | ND         | 873       | 2.0     | 21.8        | ND       | 0.85      | 8.58      |
| FEBRUARY  | -2006  | 3.65*   | 7.45*   | ND*        | 845*      | 1.9     | 22.5*       | ND*      | 3.18*     | 7.84*     |
| MARCH     | -2006  | 3.70    | 7.40    | ND         | 882       | 3.7     | 22.7        | ND       | 1.20      | 7.63      |
| APRIL     | -2006  | 3.73    | 7.41    | ND         | 879       | 2.4     | 23.0        | ND       | 1.09      | 7.28      |
| MAY       | -2006  | 4.31    | 7.42    | ND         | 893       | <1.4    | 23.5        | ND       | 1.09      | 7.16      |
| JUNE      | -2006  | 5.23    | 7.51    | ND         | 894       | <1.4    | 24.4        | <0.11    | 2.09      | 6.94      |
| JULY      | -2006  | 3.99    | 7.44    | ND         | 895       | 1.8     | 26.6        | ND       | 0.83      | 6.43      |
| AUGUST    | -2006  | 5.06    | 7.40    | ND         | 876       | ND      | 27.7        | ND       | 0.96      | 6.41      |
| SEPTEMBER | R-2006 | 5.92    | 7.32    | ND         | 873       | ND      | 27.2        | ND       | 0.84      | 5.30      |
| OCTOBER   | -2006  | 6.78    | 7.29    | ND         | 848       | <1.4    | 25.1        | ND       | 1.33      | 5.33      |
| NOVEMBER  | -2006  | 6.67    | 7.23    | ND         | 785       | <1.4    | 25.0        | ND       | 1.13      | 6.44      |
| DECEMBER  | -2006  | 6.58    | 7.20    | ND         | 758       | 3.0     | 22.2        | <0.11    | 1.99      | 7.05      |
| =======   | =====  | ======= | ======= | =======    | =======   | ======= | =======     | =======  | =======   | =======   |
| Average   |        | 4.95    | 7.37    | ND         | 859.50    | 1.3     | 24.3        | 0.00     | 1.45      | 6.86      |

\* = February monthly average values were calculated based on two different sources. The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as an alternative compliance monitoring point. The February SB\_OUTFALL\_00 data from February 1,2,25,26,27 and 28 were the only data points utilized in the annual average. The data from SB\_SEC\_EFF\_29 collected from February 5 thru the 23 was not included in annual average, although it is included in the calculation of the shown monthly average for February. For comparision February 2006 analytical data for these two sampling points can be referenced in the following table.

|                |               |       |         |            | Total     |         |             |          |           |           |
|----------------|---------------|-------|---------|------------|-----------|---------|-------------|----------|-----------|-----------|
|                |               |       |         | Settleable | Dissolved | Oil &   | Outfall     | Residual |           | Dissolved |
|                |               | Flow  | Н       | Solids     | Solids    | Grease  | Temperature | Chlorine | Turbidity | Oxygen    |
|                | Source        | (mgd) |         | (ml/L)     | (mg/L)    | (mg/L)  | ( C )       | (mg/L)   | (NTU)     | (mg/L)    |
| =========      |               |       | ======= | =======    | =======   | ======= | =======     | =======  | =======   | =======   |
| FEBRUARY -2006 | SB_SEC_EFF_29 | 3.6   | 7.46    | ND         | 839       | 1.6     | 22.5        | ND       | 2.92      | 7.86      |
| FEBRUARY -2006 | SB_OUTFALL_00 | 3.65  | 7.41    | ND         | 858       | 3.2     | 22.1        | ND       | 3.98      | 7.79      |

### From 01-JAN-2006 To 31-DEC-2006

# Influent to Plant (SB\_INF\_02)

|                | Flow<br>(mgd) | рН      | Total<br>Dissolved<br>Solids<br>(mg/L) | Biochemical<br>Oxygen<br>Demand<br>(mg/L) | Total<br>Suspended<br>Solids<br>(mg/L) | Volatile<br>Suspended<br>Solids<br>(mg/L) |
|----------------|---------------|---------|----------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|
| Limit:         |               |         |                                        |                                           |                                        |                                           |
| =========      | =======       | ======= | =======                                | =======                                   | =======                                | =======                                   |
| JANUARY -2006  | 4.18          | 7.57    | 905                                    | 303                                       | 253                                    | 224                                       |
| FEBRUARY -2006 | 4.15          | 7.53    | 899                                    | 268                                       | 234                                    | 205                                       |
| MARCH -2006    | 4.16          | 7.52    | 891                                    | 243                                       | 199                                    | 172                                       |
| APRIL -2006    | 4.27          | 7.59    | 888                                    | 260                                       | 200                                    | 172                                       |
| MAY -2006      | 5.00          | 7.55    | 895                                    | 273                                       | 211                                    | 187                                       |
| JUNE -2006     | 4.98          | 7.58    | 911                                    | 263                                       | 218                                    | 187                                       |
| JULY -2006     | 5.53          | 7.62    | 913                                    | 267                                       | 235                                    | 209                                       |
| AUGUST -2006   | 6.43          | 7.52    | 879                                    | 288                                       | 248                                    | 215                                       |
| SEPTEMBER-2006 | 7.76          | 7.49    | 881                                    | 298                                       | 258                                    | 227                                       |
| OCTOBER -2006  | 8.81          | 7.57    | 869                                    | 348                                       | 255                                    | 225                                       |
| NOVEMBER -2006 | 8.86          | 7.47    | 800                                    | 325                                       | 295                                    | 262                                       |
| DECEMBER -2006 | 8.61          | 7.50    | 770                                    | 289                                       | 259                                    | 227                                       |
| ===========    | =======       | ======= | =======                                | =======                                   | =======                                | =======                                   |
| Average        | 6.06          | 7.54    | 875                                    | 285                                       | 239                                    | 209                                       |

# SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE Trace Metals

### (Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2006 To: 31-DEC-2006

| Analyte:                        | Antimony               | Antimony                          | Arsenic                  | Arsenic                             | Beryllium            | Beryllium                   |
|---------------------------------|------------------------|-----------------------------------|--------------------------|-------------------------------------|----------------------|-----------------------------|
| Max MDL Unit                    | 2.9 UG/L               | 2.9 UG/L                          | .4 UG/L                  | .4 UG/L                             | .04 UG/L             | .04 UG/L                    |
| Source:                         | INFLUENT               | EFFLUENT                          | INFLUENT                 | EFFLUENT                            | INFLUENT             | EFFLUENT                    |
| Month/Limit:                    |                        |                                   |                          | 510                                 |                      |                             |
| ==========                      |                        | =======                           | =========                | =======                             | =========            | =======                     |
| JANUARY -2006                   | 1.6                    | 1.2                               | 0.72                     | 0.54                                | ND                   | ND                          |
| FEBRUARY -2006                  | ND                     | ND*                               | 0.64                     | 0.42*                               | ND                   | ND*                         |
| MARCH -2006                     | ND                     | 1.02                              | 0.91                     | 0.43                                | ND                   | ND                          |
| APRIL -2006                     | ND                     | ND                                | 0.71                     | ND                                  | ND                   | ND                          |
| MAY -2006                       | ND                     | ND                                | 0.63                     | ND                                  | ND                   | ND                          |
| JUNE -2006                      | ND                     | ND                                | 0.48                     | 0.40                                | ND                   | ND                          |
| JULY -2006                      | ND                     | ND                                | 0.49                     | 0.41                                | ND                   | ND                          |
| AUGUST -2006                    | ND                     | ND                                | 0.50                     | 0.53                                | ND                   | ND                          |
| SEPTEMBER-2006                  | ND                     | ND                                | ND                       | ND                                  | ND                   | ND                          |
| OCTOBER -2006                   | ND                     | ND                                | 0.57                     | ND                                  | ND                   | ND                          |
| NOVEMBER -2006                  | ND                     | ND                                | 1.11                     | 0.72                                | NR                   | ND                          |
| DECEMBER -2006                  | ND                     | ND                                | 0.65                     | ND                                  | NR                   | 0.04                        |
| AVERAGE                         | 0.13                   | 0.1                               | 0.62                     | 0.28                                | ND                   | 0.003                       |
|                                 |                        |                                   |                          |                                     |                      |                             |
| Analyte:                        | Cadmium                | Cadmium                           | Chromium                 | Chromium                            | Copper               | Copper                      |
| Max MDL Units:                  | .53 UG/L               | .53 UG/L                          | 1.2 UG/L                 | 1.2 UG/L                            | 0.3925 UG/L (        |                             |
| Source:                         | INFLUENT               | EFFLUENT                          | INFLUENT                 | EFFLUENT                            | INFLUENT             | EFFLUENT                    |
| Month/Limit:                    |                        | 100                               |                          | 200                                 |                      | 100                         |
| =========                       | ==========             |                                   | =========                |                                     | =========            | ========                    |
| JANUARY -2006                   | ND                     | 0.3                               | 1.0                      | 0.6                                 | 38                   | 9                           |
| FEBRUARY -2006                  | ND                     | ND*                               | 1.9                      | 0.8*                                | 22                   | 11*                         |
| MARCH -2006                     | ND                     | ND                                | 1.6                      | 0.9                                 | 63                   | 8                           |
| APRIL -2006                     | ND                     | ND                                | 0.7                      | ND                                  | 60                   | 6                           |
| MAY -2006                       | ND                     | ND                                | 1.6                      | ND                                  | 56                   | 7                           |
| JUNE -2006                      | 0.3                    |                                   |                          |                                     |                      |                             |
| JULY -2006                      | 0.3                    | ND                                | 1.4                      | ND                                  | 41                   | 19                          |
| AUGUST -2006                    | 0.3                    | ND<br>ND                          | 1.4<br>3.2               | ND<br>ND                            | 41<br>73             | 19<br>6                     |
| 1100001 2000                    |                        |                                   |                          |                                     |                      |                             |
| SEPTEMBER-2006                  | 0.4                    | ND                                | 3.2                      | ND                                  | 73                   | 6                           |
|                                 | 0.4<br>ND              | ND<br>ND                          | 3.2<br>1.8               | ND<br>0.8                           | 73<br>64             | 6<br>32                     |
| SEPTEMBER-2006                  | 0.4<br>ND<br>ND        | ND<br>ND<br>ND                    | 3.2<br>1.8<br>2.2        | ND<br>0.8<br>1.2                    | 73<br>64<br>49       | 6<br>32<br>6                |
| SEPTEMBER-2006<br>OCTOBER -2006 | 0.4<br>ND<br>ND<br>0.4 | ND<br>ND<br>ND<br>0.3<br>ND<br>ND | 3.2<br>1.8<br>2.2<br>2.3 | ND<br>0.8<br>1.2<br>0.4<br>ND<br>ND | 73<br>64<br>49<br>32 | 6<br>32<br>6<br>8<br>8<br>5 |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the  $SB_OUTFALL_00$  sampling point data and does not include the February  $SB_SEC_EFF_29$  value

ND= not detected

NA= not analyzed

NS= not sampled

NR= Not Required

### SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

### Trace Metals

(Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2006 To: 31-DEC-2006

| Analyte:                                | Iron                                    | Iron     | Lead        | Lead     | Mercury       | Mercury  |
|-----------------------------------------|-----------------------------------------|----------|-------------|----------|---------------|----------|
| Max MDL Units:                          | 37 UG/L                                 | 37 UG/L  | 2 UG/L      | 2 UG/L   | .09 UG/L      | .09 UG/L |
| Source:                                 | INFLUENT                                | EFFLUENT | INFLUENT    | EFFLUENT | INFLUENT      | EFFLUENT |
| Month/Limit:                            |                                         |          |             | 200      |               | 4.00     |
| ==========                              | ==========                              |          | ==========  |          | =========     | ======== |
| JANUARY -2006                           | 338                                     | ND       | 3.4         | ND       | 0.19          | ND       |
| FEBRUARY -2006                          | #                                       | 51*      | 2.1         | ND*      | 0.16          | ND*      |
| MARCH -2006                             | 551                                     | 130      | ND          | 2.5      | 0.13          | ND       |
| APRIL -2006                             | 392                                     | 57       | ND          | ND       | ND            | ND       |
| MAY -2006                               | 430                                     | 46       | 2.4         | ND       | ND            | ND       |
| JUNE -2006                              | 390                                     | 63       | ND          | 1.8      | ND            | ND       |
| JULY -2006                              | 607                                     | 51       | 2.1         | ND       | 0.10          | ND       |
| AUGUST -2006                            | 417                                     | 43       | ND          | ND       | ND            | ND       |
| SEPTEMBER-2006                          | 655                                     | 106      | 2.0         | ND       | ND            | ND       |
| OCTOBER -2006                           | 540                                     | 110      | 3.3         | ND       | ND            | ND       |
| NOVEMBER -2006                          | 575                                     | 70       | 1.5         | ND       | 0.17          | ND       |
| DECEMBER -2006                          | 483                                     | 67       | ND          | ND       | ND            | ND       |
| ======================================= | ======================================= |          |             |          | =========     |          |
| AVERAGE                                 | 489                                     | 68       | 1.4         | 0.4      | 0.06          | ND       |
|                                         |                                         |          |             |          |               |          |
| Analyte:                                | Nickel                                  | Nickel   | Selenium    | Selenium | Silver        | Silver   |
| Max MDL Units:                          | .53 UG/L                                | .53 UG/L | .28 UG/L    | .28 UG/L | 0.4 UG/L      | 0.4 UG/L |
| Source:                                 | INFLUENT                                | EFFLUENT | INFLUENT    | EFFLUENT | INFLUENT      | EFFLUENT |
| Month/Limit:                            | 1111 110 1111                           | 510      | 2111 202111 | 1500     | 1111 110 1111 | 29       |
| ==========                              | =========                               |          | ==========  |          | =========     |          |
| JANUARY -2006                           | 4.71                                    | 4.06     | 1.58        | 0.56     | ND            | 0.2      |
| FEBRUARY -2006                          | 5.07                                    | 4*       | 1.62        | 0.59*    | 0.5           | 0.2*     |
| MARCH -2006                             | 10.30                                   | 4.32     | 2.14        | 0.69     | 2.4           | ND       |
| APRIL -2006                             | 4.86                                    | 2.80     | 1.18        | 0.54     | 0.3           | ND       |
| MAY -2006                               | 4.22                                    | 3.26     | 1.30        | 0.51     | 2.0           | 0.2      |
| JUNE -2006                              | 5.22                                    | 4.25     | 1.19        | 0.38     | 0.5           | ND       |
| JULY -2006                              | 6.70                                    | 3.61     | 1.04        | 0.44     | 2.3           | ND       |
| AUGUST -2006                            | 37.0                                    | 6.80     | 1.53        | 0.34     | 0.6           | ND       |
| SEPTEMBER-2006                          | 2.52                                    | 1.29     | 1.27        | 0.40     | 0.5           | 0.5      |
| OCTOBER -2006                           | 5.87                                    | 4.37     | 1.26        | 0.38     | 0.5           | 0.4      |
| NOVEMBER -2006                          | 5.31                                    | 3.44     | 1.49        | 0.34     | 1.2           | 0.3      |
| DECEMBER -2006                          | 8.68                                    | 10.30    | 1.18        | ND       | 2.3           | 0.6      |
|                                         | ==========                              |          | ==========  |          | =========     |          |
| AVERAGE                                 | 8.37                                    | 4.41     | 1.40        | 0.42     | 1.1           | 0.2      |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample. The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

ND= not detected NA= not analyzed NS= not sampled

<sup>#</sup> = Original value affected by spectral interference, estimated value of 442 ug/L based on different wavelength.

### SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

### Trace Metals

(Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2006 To: 31-DEC-2006

| Analyte:       | Thallium                                | Thallium | Zinc       | Zinc     | Manganese  | Manganese |
|----------------|-----------------------------------------|----------|------------|----------|------------|-----------|
| Max MDL Units: | 3.9 UG/L                                | 3.9 UG/L | .55 UG/L   | .55 UG/L | .24 UG/L   | .24 UG/L  |
| Source:        | INFLUENT                                | EFFLUENT | INFLUENT   | EFFLUENT | INFLUENT   | EFFLUENT  |
| Month/Limit:   |                                         |          |            | 1200     |            |           |
|                | ======================================= | =======  | ========== | =======  | ========== |           |
| JANUARY -2006  | ND                                      | ND       | 129        | 31.6     | 57         | 10.7      |
| FEBRUARY -2006 | ND                                      | ND*      | 127        | 35*      | 39         | 11*       |
| MARCH -2006    | ND                                      | ND       | 116        | 30.3     | 87         | 10.4      |
| APRIL -2006    | ND                                      | ND       | 99         | 22.8     | 61         | 14.7      |
| MAY -2006      | ND                                      | ND       | 111        | 25.7     | 62         | 29.6      |
| JUNE -2006     | ND                                      | ND       | 124        | 28.8     | 66         | 78.5      |
| JULY -2006     | 3.0                                     | ND       | 157        | 26.4     | 56         | 71.9      |
| AUGUST -2006   | ND                                      | ND       | 113        | 39.0     | 38         | 6.9       |
| SEPTEMBER-2006 | 4.5                                     | 4.3      | 147        | 33.9     | 40         | 12.2      |
| OCTOBER -2006  | ND                                      | ND       | 134        | 36.5     | 31         | 11.4      |
| NOVEMBER -2006 | ND                                      | ND       | 127        | 32.0     | 44         | 4.4       |
| DECEMBER -2006 | ND                                      | ND       | 121        | 24.5     | 38         | 6.6       |
| AVERAGE        | 0.6                                     | 0.4      | 125        | 30.1     | 52         | 23.4      |
| AVELAGE        | 0.0                                     | 0.4      | 143        | 30.1     | 34         | 43.4      |

| Analyte: Max MDL Units: Source: Month/Limit: | Boron<br>1.7 UG/L<br>INFLUENT | Boron<br>1.7 UG/L<br>EFFLUENT | Barium<br>.039 UG/L<br>INFLUENT | Barium<br>.039 UG/L<br>EFFLUENT |
|----------------------------------------------|-------------------------------|-------------------------------|---------------------------------|---------------------------------|
| =========                                    |                               |                               | =========                       |                                 |
| JANUARY -2006                                | 365                           | 370                           | 86                              | 52.7                            |
| FEBRUARY -2006                               | 333                           | 356*                          | 83                              | 60*                             |
| MARCH -2006                                  | 371                           | 313                           | 120                             | 63.7                            |
| APRIL -2006                                  | 298                           | 328                           | 83                              | 56.3                            |
| MAY -2006                                    | 349                           | 350                           | 95                              | 50.8                            |
| JUNE -2006                                   | 284                           | 280                           | 78                              | 48.7                            |
| JULY -2006                                   | 366                           | 310                           | 96                              | 53.4                            |
| AUGUST -2006                                 | 240                           | 379                           | 82                              | 52.0                            |
| SEPTEMBER-2006                               | 369                           | 326                           | 110                             | 48.5                            |
| OCTOBER -2006                                | 309                           | 324                           | 71                              | 43.4                            |
| NOVEMBER -2006                               | 288                           | 252                           | 73                              | 39.2                            |
| DECEMBER -2006                               | 273                           | 233                           | 70                              | 32.8                            |
| =========                                    | =========                     | =======                       | =========                       |                                 |
| AVERAGE                                      | 320                           | 315                           | 87                              | 49.2                            |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\rm th}$  SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the  $SB_OUTFALL_00$  sampling point data and does not include the February  $SB_SEC_EFF_29$  value

ND= not detected NA= not analyzed NS= not sampled

## SOUTH BAY WATER RECLAMATION PLANT Additional Analytes

From 01-JAN-2006 To 31-DEC-2006

|                | Calc     | ium   | Magne   | esium | Lit     | hium   |
|----------------|----------|-------|---------|-------|---------|--------|
| MDL/Units      | .04      | mg/L  | .014    | mg/L  | .002    | mg/L   |
|                | Inf.     | Eff.  | Inf.    | Eff.  | Inf.    | Eff.   |
| =========      | ======== | ===== | ======= |       | ======= |        |
| JANUARY -2006  | 84.6     | 75.3  | 33.9    | 31.4  | 0.027   | 0.027  |
| FEBRUARY -2006 | 49.8     | 57.0* | 22.2    | 25.0* | 0.029   | 0.030* |
| MARCH -2006    | 57.8     | 53.9  | 23.4    | 21.9  | 0.034   | 0.036  |
| APRIL -2006    | 63.4     | 64.5  | 26.4    | 26.4  | 0.029   | 0.034  |
| MAY -2006      | 60.6     | 59.9  | 24.6    | 23.5  | 0.036   | 0.031  |
| JUNE -2006     | 68.6     | 61.7  | NR      | 26.4  | 0.025   | 0.021  |
| JULY -2006     | 60.7     | 61.5  | NR      | 24.7  | 0.028   | 0.029  |
| AUGUST -2006   | 74.6     | 65.8  | 31.5    | 28.1  | 0.032   | 0.029  |
| SEPTEMBER-2006 | 67.0     | 55.8  | 27.7    | 25.2  | 0.030   | 0.025  |
| OCTOBER -2006  | 56.2     | 52.5  | 26.1    | 24.2  | 0.025   | 0.024  |
| NOVEMBER -2006 | 50.2     | 53.3  | NR      | 24.1  | 0.025   | 0.022  |
| DECEMBER -2006 | 53.3     | 54.2  | NR      | 20.7  | 0.026   | 0.027  |
| =========      | =======  | ===== | ======= | ===== | ======= | ====== |
| Average:       | 62.2     | 59.9  | 27.0    | 25.1  | 0.029   | 0.028  |

|           |        | Soc     | lium | Potas   | Potassium |  |  |  |
|-----------|--------|---------|------|---------|-----------|--|--|--|
| MDL/Units | 3      | 1       | mg/L | .3      | mg/L      |  |  |  |
|           |        | Inf.    | Eff. | Inf.    | Eff.      |  |  |  |
| =======   |        | ======= |      | ======= |           |  |  |  |
| JANUARY   | -2006  | 186     | 191  | 17.5    | 14.6      |  |  |  |
| FEBRUARY  | -2006  | 151     | 167* | 13.6    | 13.0*     |  |  |  |
| MARCH     | -2006  | 145     | 146  | 12.5    | 11.2      |  |  |  |
| APRIL     | -2006  | 163     | 177  | 16.7    | 14.8      |  |  |  |
| MAY       | -2006  | 189     | 164  | 19.4    | 14.4      |  |  |  |
| JUNE      | -2006  | 162     | 173  | 17.6    | 15.4      |  |  |  |
| JULY      | -2006  | 158     | 165  | 16.4    | 14.7      |  |  |  |
| AUGUST    | -2006  | 181     | 191  | 18.5    | 16.9      |  |  |  |
| SEPTEMBER | R-2006 | 168     | 167  | 17.1    | 14.1      |  |  |  |
| OCTOBER   | -2006  | 172     | 164  | 16.6    | 14.4      |  |  |  |
| NOVEMBER  | -2006  | 145     | 155  | 16.0    | 14.0      |  |  |  |
| DECEMBER  | -2006  | 142     | 149  | 17.3    | 16.1      |  |  |  |
| =======   |        | ======= |      | ======= |           |  |  |  |
| Average:  |        | 164     | 167  | 16.6    | 14.6      |  |  |  |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the  $SB\_OUTFALL\_00$  sampling point data and does not include the February  $SB\_SEC\_EFF\_29$  value

ND=not detected; NS=not sampled; NA=not analyzed; NR = not required

### SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE

#### Anions

(Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2006 To: 31-DEC-2006

| Analyte:<br>MDL:<br>Units:<br>Source:   | Bromide<br>.1<br>MG/L<br>INFLUENT | Bromide<br>.1<br>MG/L<br>EFFLUENT | Chloride<br>7<br>MG/L<br>INFLUENT       | Chloride<br>7<br>MG/L<br>EFFLUENT | Fluoride<br>.05<br>MG/L<br>INFLUENT     | Fluoride<br>.05<br>MG/L<br>EFFLUENT |
|-----------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------|-----------------------------------------|-------------------------------------|
| ======================================= | =========                         | ========                          | ======================================= | ========                          | ======================================= | ========                            |
| JANUARY -2006<br>FEBRUARY -2006         | NR<br>0.325                       | 0.454<br>0.361*                   | NR<br>197                               | 229<br>215*                       | NR<br>0.461                             | 0.363<br>0.430*                     |
| MARCH -2006                             | NR                                | 0.452                             | NR                                      | 238                               | NR                                      | 0.430                               |
| APRIL -2006                             | NR                                | 0.577                             | NR                                      | 235                               | NR                                      | 0.483                               |
| MAY -2006                               | 0.345                             | 0.390                             | 198                                     | 203                               | 0.411                                   | 0.397                               |
| JUNE -2006                              | NR                                | 0.461                             | NR                                      | 248                               | NR                                      | 0.485                               |
| JULY -2006                              | NR                                | 0.435                             | NR                                      | 227                               | NR                                      | 0.248                               |
| AUGUST -2006                            | 0.429                             | 0.416                             | 233                                     | 238                               | 0.346                                   | 0.406                               |
| SEPTEMBER-2006                          | NR                                | 0.388                             | NR                                      | 219                               | NR                                      | 0.409                               |
| OCTOBER -2006                           | 0.426                             | 0.445                             | 210                                     | 221                               | 0.379                                   | 0.412                               |
| NOVEMBER -2006                          | NR                                | 0.453                             | NR                                      | 233                               | NR                                      | 0.480                               |
| DECEMBER -2006                          | NR                                | 0.370                             | NR                                      | 188                               | NR                                      | 0.398                               |
| AVERAGE                                 | 0.381                             | 0.440                             | 210                                     | 225                               | 0.399                                   | 0.410                               |

| Analyte:<br>MDL:<br>Units:<br>Source: |        | Nitrate<br>.04<br>MG/L<br>INFLUENT | Nitrate<br>.04<br>MG/L<br>EFFLUENT | Ortho PhosphO:<br>.2<br>MG/L<br>INFLUENT | rtho Phosphate<br>.2<br>MG/L<br>EFFLUENT | Sulfate<br>9<br>MG/L<br>INFLUENT | Sulfate<br>9<br>MG/L<br>EFFLUENT |
|---------------------------------------|--------|------------------------------------|------------------------------------|------------------------------------------|------------------------------------------|----------------------------------|----------------------------------|
| =======                               | 2006   |                                    | 26.0                               |                                          |                                          |                                  | 106                              |
| JANUARY                               | -2006  | NR                                 | 26.9                               | NR                                       | NR                                       | NR                               | 186                              |
| FEBRUARY                              | -2006  | ND                                 | 14.5*                              | 11.00                                    | 10.70*                                   | 147                              | 183                              |
| MARCH                                 | -2006  | NR                                 | 29.3                               | NR                                       | 8.61                                     | NR                               | 180                              |
| APRIL                                 | -2006  | NR                                 | 29.9                               | NR                                       | 9.24                                     | NR                               | 190                              |
| MAY                                   | -2006  | 0.2                                | 25.7                               | 12.80                                    | 4.67                                     | 128                              | 177                              |
| JUNE                                  | -2006  | NR                                 | 30.0                               | NR                                       | 8.12                                     | NR                               | 145                              |
| JULY                                  | -2006  | NR                                 | 34.2                               | NR                                       | 7.21                                     | NR                               | 157                              |
| AUGUST                                | -2006  | 0.2                                | 36.0                               | 11.40                                    | 9.51                                     | 117                              | 160                              |
| SEPTEMBER                             | R-2006 | NR                                 | 35.5                               | NR                                       | 7.91                                     | NR                               | 168                              |
| OCTOBER                               | -2006  | ND                                 | 30.7                               | 12.30                                    | 11.50                                    | 120                              | 161                              |
| NOVEMBER                              | -2006  | NR                                 | 35.3                               | NR                                       | 6.27                                     | NR                               | 150                              |
| DECEMBER                              | -2006  | NR                                 | 30.3                               | NR                                       | 5.88                                     | NR                               | 148                              |
| =======                               |        | =========                          | ========                           | =========                                | =======                                  | =========                        | ========                         |
| AVERAGE                               |        | 0.1                                | 31.3                               | 11.88                                    | 7.89                                     | 128                              | 166                              |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the  $SB_OUTFALL_00$  sampling point data and does not include the February  $SB_SEC_EFF_29$  value

ND= not detected NA= not analyzed NS= not sampled NR= not required

#### ANNUAL SEWAGE

Ammonia-Nitrogen and Total Cyanides (Limits shown are the 6-Month Median Maximum)

From: 01-JAN-2006 To: 31-DEC-2006

|                | Ammonia-N  | Ammonia-N     | Cyanides,Total | Cyanides,Total |
|----------------|------------|---------------|----------------|----------------|
|                | .2 MG/L    | .2 MG/L       | .002 MG/L      | .002 MG/L      |
|                | SB_INF_02  | SB_OUTFALL_00 | SB_INF_02      | SB_OUTFALL_00  |
| Limit:         |            | 61            |                | 0.100          |
| =========      | ========== | =========     | ==========     |                |
| JANUARY -2006  | NR         | ND            | 0.0033         | 0.0026         |
| FEBRUARY -2006 | 33.8       | ND*           | ND             | 0.003*         |
| MARCH -2006    | NR         | 0.2           | ND             | ND             |
| APRIL -2006    | NR         | 0.4           | 0.0023         | 0.0020         |
| MAY -2006      | 32.5       | ND            | ND             | 0.0021         |
| JUNE -2006     | NR         | ND            | ND             | ND             |
| JULY -2006     | NR         | ND            | ND             | ND             |
| AUGUST -2006   | 27.7       | ND            | ND             | ND             |
| SEPTEMBER-2006 | NR         | 0.3           | ND             | ND             |
| OCTOBER -2006  | 29.3       | ND            | ND             | ND             |
| NOVEMBER -2006 | NR         | ND            | ND             | ND             |
| DECEMBER -2006 | NR         | ND            | ND             | ND             |
| =========      | ========== | =========     | ===========    | =========      |
| Average:       | 30.8       | 0.1           | 0.0005         | 0.0006         |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the  $SB_OUTFALL_00$  sampling point data and does not include the February  $SB_SEC_EFF_29$  value

ND= not detected

NA= not analyzed

NS= not sampled

NR= not required

# SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE Radioactivity

From: 01-JAN-2006 To: 31-DEC-2006

| Source Month                            | Gross Alpha Radiation                   | Gross Beta Radiation                    |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| ======================================= | ======================================= | ======================================= |
| SB_OUTFALL_00 JANUARY -2006             | 2.6±1.2                                 | 9.1±2.8                                 |
| SB_SEC_EFF_29 FEBRUARY -2006*           | 1.8±1.0*                                | 11.3±3.3*                               |
| SB_OUTFALL_00 MARCH -2006               | 0.9±0.9                                 | 10.3±2.9                                |
| SB_OUTFALL_00 APRIL -2006               | 2.0±1.0                                 | 11.5±3.1                                |
| SB_OUTFALL_00 MAY -2006                 | 0.9±0.6                                 | 8.8±3.0                                 |
| SB_OUTFALL_00 JUNE -2006                | 1.8±1.0                                 | 13.7±3.9                                |
| SB_OUTFALL_00 JULY -2006                | 1.2±0.7                                 | 13.5±3.6                                |
| SB_OUTFALL_00 AUGUST -2006              | 1.9±0.9                                 | 11.7±3.0                                |
| SB_OUTFALL_00 SEPTEMBER-2006            | -0.1±0.6                                | 4.9±2.3                                 |
| SB_OUTFALL_00 OCTOBER -2006             | 1.0±0.9                                 | 14.0±2.9                                |
| SB_OUTFALL_00 NOVEMBER -2006            | 0.8±0.8                                 | 11.9±3.7                                |
| SB_OUTFALL_00 DECEMBER -2006            | 1.7±1.0                                 | 8.6±2.1                                 |
| ======================================= | ======================================= | ======================================= |
| AVERAGE                                 | 1.3±0.9                                 | 10.7±3.0                                |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the  $SB_OUTFALL_00$  sampling point data and does not include the February  $SB_SEC_EFF_29$  value

ND= not detected NA= not analyzed NS= not sampled

Units in picocuries/liter (pCi/L)

## SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

From 01-JAN-2006 To 31-DEC-2006

|                                         |      |              |          | SEC      |       |          |          |          |       |       |       |       |       |       |          |
|-----------------------------------------|------|--------------|----------|----------|-------|----------|----------|----------|-------|-------|-------|-------|-------|-------|----------|
|                                         |      |              | EFF      | EFF      | EFF   | EFF      | EFF      | EFF      | EFF   | EFF   | EFF   | EFF   | EFF   | EFF   | EFF      |
|                                         |      |              | JAN      | FEB*     | MAR   | APR      | MAY      | JUN      | JUL   | AUG   | SEP   | OCT   | NOV   | DEC   | ANN      |
| Analyte                                 | MDL  | Units        | Avg      | Avg      | Avg   | Avg      | Avg      | Avg      | Avg   | Avg   | Avg   | Avg   | Avg   | Avg   | Avg      |
| ======================================= |      | =====        | =====    | _        | _     | =====    | =====    | =====    | _     | _     | ===== | ===== | ===== | _     | =====    |
| Aldrin                                  | 60   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Dieldrin                                | 50   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| BHC, Alpha isomer                       | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| BHC, Beta isomer                        | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| BHC, Gamma isomer                       | 10   | NG/L<br>NG/L | 28       | 16       | 23    | 16       | 23       | 28       | 23    | <10   | ND    | 13    | 11    | ND    | 15       |
| •                                       | 20   | NG/L<br>NG/L | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| BHC, Delta isomer                       |      |              |          |          |       |          |          |          |       |       |       |       |       |       |          |
| p,p-DDD                                 | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| p,p-DDE                                 | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| p,p-DDT                                 | 50   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| o,p-DDD                                 | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| o,p-DDE                                 | 100  | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| o,p-DDT                                 | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Heptachlor                              | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Heptachlor epoxide                      | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Alpha (cis) Chlordane                   | 30   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Gamma (trans) Chlordane                 | 80   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Alpha Chlordene                         |      | NG/L         | NA       | NA       | NA    | NA       | NA       | NA       | NA    | NA    | NA    | NA    | NA    | NA    | NA       |
| Gamma Chlordene                         |      | NG/L         | NA       | NA       | NA    | NA       | NA       | NA       | NA    | NA    | NA    | NA    | NA    | NA    | NA       |
| Oxychlordane                            | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Trans Nonachlor                         | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Cis Nonachlor                           | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Alpha Endosulfan                        | 30   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Beta Endosulfan                         | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Endosulfan Sulfate                      | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Endrin                                  | 50   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
|                                         | 20   | NG/L<br>NG/L | ND<br>ND | ND<br>ND | ND    | ND<br>ND | ND<br>ND | ND<br>ND | ND    | ND    | ND    | ND    | ND    | ND    | ND<br>ND |
| Endrin aldehyde                         |      |              |          |          |       |          |          |          |       |       |       |       |       |       |          |
| Mirex                                   | 20   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Methoxychlor                            | 60   | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| Toxaphene                               |      | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| PCB 1016                                |      | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| PCB 1221                                |      | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| PCB 1232                                |      | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| PCB 1242                                |      | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| PCB 1248                                |      | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| PCB 1254                                | 2000 | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| PCB 1260                                | 2000 | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| PCB 1262                                | 2000 | NG/L         | ND       | ND       | ND    | ND       | ND       | ND       | ND    | ND    | ND    | ND    | ND    | ND    | ND       |
| ======================================= | ==== | =====        | =====    | ===== :  | ====  | =====    | =====    | =====    | ===== | ===== | ===== | ===== | ===== | ===== | =====    |
| Aldrin + Dieldrin                       | 60   | NG/L         | 0        | 0        | 0     | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0        |
| Hexachlorocyclohexanes                  | 20   | NG/L         | 28       | 16       | 23    | 16       | 23       | 28       | 23    | 0     | 0     | 13    | 11    | 0     | 15       |
| DDT and derivatives                     | 100  | NG/L         | 0        | 0        | 0     | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0        |
| Chlordane + related cmpds.              | 80   | NG/L         | 0        | 0        | 0     | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0        |
| Polychlorinated biphenyls               |      | NG/L         | 0        | 0        | 0     | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0        |
| Endosulfans                             | 30   | NG/L         | 0        | 0        | 0     | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0        |
| ======================================= |      | - /          | =====    | -        | -     | -        | -        | =====    | -     | -     | -     | ===== | -     | -     | =====    |
| Heptachlors                             | 20   | NG/L         | 0        | 0        | 0     | 0        | 0        | 0        | 0     | 0     | 0     | 0     | 0     | 0     | 0        |
| ======================================  | ==== | NG/L         |          |          | ===== |          | =====    | =====    |       |       |       | ===== | ===== | ===== | =====    |
| Chlorinated Hydrocarbons                |      | NG/L         | 28       | 16       | 23    | 16       | 23       | 28       | 23    | 0     | 0     | 13    | 11    | 0     | 15       |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

<sup>&</sup>quot;Standards for alpha and gamma chlordene are no longer available in the U.S. for the analysis of these compounds."

# SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Chlorinated Pesticide Analysis

From 01-JAN-2006 To 31-DEC-2006

|                            |      |       | INF<br>FEB | INF<br>MAY | INF<br>AUG | INF<br>OCT | INF     |
|----------------------------|------|-------|------------|------------|------------|------------|---------|
| Analyte                    | MDL  | Units | Avg        | Avg        | Avg        |            | Average |
|                            | ==== | ===== | =====      | =====      | =====      | =====      | =====   |
| Aldrin                     | 60   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Dieldrin                   | 50   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| BHC, Alpha isomer          | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| BHC, Beta isomer           | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| BHC, Gamma isomer          | 10   | NG/L  | 44         | 71         | 29         | 41         | 46      |
| BHC, Delta isomer          | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| p,p-DDD                    | 20   | NG/L  | ND         | ND         | 26         | ND         | 7       |
| p,p-DDE                    | 20   | NG/L  | ND         | ND         | 20         | ND         | 5       |
| p,p-DDT                    | 50   | NG/L  | ND         | ND         | 64         | ND         | 16      |
| o,p-DDD                    | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| o,p-DDE                    | 100  | NG/L  | ND         | ND         | ND         | ND         | ND      |
| o,p-DDT                    | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Heptachlor                 | 20   | NG/L  | ND         | ND         | 22         | ND         | 6       |
| Heptachlor epoxide         | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Alpha (cis) Chlordane      | 30   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Gamma (trans) Chlordane    | 80   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Alpha Chlordene            |      | NG/L  | NA         | NA         | NA         | NA         | NA      |
| Gamma Chlordene            |      | NG/L  | NA         | NA         | NA         | NA         | NA      |
| Oxychlordane               | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Trans Nonachlor            | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Cis Nonachlor              | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Alpha Endosulfan           | 30   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Beta Endosulfan            | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Endosulfan Sulfate         | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Endrin                     | 50   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Endrin aldehyde            | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Mirex                      | 20   | NG/L  | ND         | ND         | ND         | ND         | ND      |
| Methoxychlor               | 60   | NG/L  | ND         | ND         | 79         | ND         | 20      |
| Toxaphene                  | 4000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
| PCB 1016                   | 4000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
| PCB 1221                   | 4000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
| PCB 1232                   | 4000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
| PCB 1242                   | 4000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
| PCB 1248                   | 2000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
| PCB 1254                   | 2000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
| PCB 1260                   | 2000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
| PCB 1262                   | 2000 | NG/L  | ND         | ND         | ND         | ND         | ND      |
|                            | ==== | ===== | =====      | =====      | =====      | =====      | =====   |
| Aldrin + Dieldrin          | 60   | NG/L  | 0          | 0          | 0          | 0          | 0       |
| Hexachlorocyclohexanes     | 20   | NG/L  | 44         | 71         | 29         | 41         | 46      |
| DDT and derivatives        | 100  | NG/L  | 0          | 0          | 110        | 0          | 28      |
| Chlordane + related cmpds. | 80   | NG/L  | 0          | 0          | 0          | 0          | 0       |
| Polychlorinated biphenyls  | 4000 | NG/L  | 0          | 0          | 0          | 0          | 0       |
| Endosulfans                | 30   | NG/L  | 0          | 0          | 0          | 0          | 0       |
|                            | ==== | ===== | =====      | =====      | =====      | =====      | =====   |
| Heptachlors                | 20   | NG/L  | 0          | 0          | 22         | 0          | 6       |
|                            | ==== | ===== | =====      | =====      | =====      | =====      | =====   |
| Chlorinated Hydrocarbons   | 4000 | NG/L  | 44         | 71         | 240        | 41         | 99      |

<sup>&</sup>quot;Standards for alpha and gamma chlordene are no longer available in the  ${\tt U.S.}$  for the analysis of these compounds."

Quarterly Sludge Project - Organophosphorus PesticidesEPA Method 614/622 (with additions) INFLUENT(SB\_INF\_02) & EFFLUENT(SB\_OUTFALL\_00) From 01-JAN-2006 To 31-DEC-2006

|                                         |     |       | EFF         | EFF         | INF         | INF         |
|-----------------------------------------|-----|-------|-------------|-------------|-------------|-------------|
|                                         |     |       | 09-MAY-2006 | 03-OCT-2006 | 09-MAY-2006 | 03-OCT-2006 |
| Analyte                                 | MDL | Units | P338014     | P355804     | P338009     | P355799     |
|                                         | === | ===== | ========    | ========    | ========    | ========    |
| Demeton O                               | .15 | UG/L  | ND          | ND          | ND          | ND          |
| Demeton S                               | .08 | UG/L  | ND          | ND          | ND          | ND          |
| Diazinon                                | .03 | UG/L  | ND          | ND          | ND          | ND          |
| Guthion                                 | .15 | UG/L  | ND          | ND          | ND          | ND          |
| Malathion                               | .03 | UG/L  | ND          | ND          | ND          | ND          |
| Parathion                               | .03 | UG/L  | ND          | ND          | ND          | ND          |
| ======================================= | === | ===== | ========    | ========    | ========    | ========    |
| Tetraethylpyrophosphate                 |     | UG/L  | NA          | NA          | NA          | NA          |
| Dichlorvos                              | .05 | UG/L  | ND          | ND          | ND          | ND          |
| Dibrom                                  | . 2 | UG/L  | ND          | ND          | ND          | ND          |
| Ethoprop                                | .04 | UG/L  | ND          | ND          | ND          | ND          |
| Phorate                                 | .04 | UG/L  | ND          | ND          | ND          | ND          |
| Sulfotepp                               | .04 | UG/L  | ND          | ND          | ND          | ND          |
| Disulfoton                              | .02 | UG/L  | ND          | ND          | ND          | ND          |
| Monocrotophos                           |     | UG/L  | NA          | NA          | NA          | NA          |
| Dimethoate                              | .04 | UG/L  | ND          | ND          | ND          | ND          |
| Ronnel                                  | .03 | UG/L  | ND          | ND          | ND          | ND          |
| Trichloronate                           | .04 | UG/L  | ND          | ND          | ND          | ND          |
| Merphos                                 | .09 | UG/L  | ND          | ND          | ND          | ND          |
| Dichlofenthion                          | .03 | UG/L  | ND          | ND          | ND          | ND          |
| Tokuthion                               | .06 | UG/L  | ND          | ND          | ND          | ND          |
| Stirophos                               | .03 | UG/L  | ND          | ND          | ND          | ND          |
| Bolstar                                 | .07 | UG/L  | ND          | ND          | ND          | ND          |
| Fensulfothion                           | .07 | UG/L  | ND          | ND          | ND          | ND          |
| EPN                                     | .09 | UG/L  | ND          | ND          | ND          | ND          |
| Coumaphos                               | .15 | UG/L  | ND          | ND          | ND          | ND          |
| Mevinphos, e isomer                     | .05 | UG/L  | ND          | ND          | ND          | ND          |
| Mevinphos, z isomer                     | . 3 | UG/L  | ND          | ND          | ND          | ND          |
| Chlorpyrifos                            |     | UG/L  | ND          | ND          | ND          | ND          |
| Thiophosphorus Pesticides               |     | UG/L  | 0.0         | 0.0         | 0.0         | 0.0         |
| Demeton -0, -S                          |     | UG/L  | 0.0         | 0.0         | 0.0         | 0.0         |
| ======================================= |     | /     |             | =========   |             |             |
| Total Organophosphorus Pesticides       |     | UG/L  | 0.0         | 0.0         | 0.0         | 0.0         |

### SOUTH BAY WATER RECLAMATION PLANT ANNUAL SEWAGE - Tributyl Tin Analysis

From 01-JAN-2006 To 31-DEC-2006

|               |     | S     | SEC_EFF*<br>FEB | EFF<br>MAY | EFF<br>AUG | EFF<br>OCT |         |
|---------------|-----|-------|-----------------|------------|------------|------------|---------|
| Analyte       | MDL | Units |                 |            |            |            | Average |
| =========     | === | ===== | =====           | =====      | =====      | =====      | =====   |
| Dibutyl tin   | 7   | UG/L  | ND              | ND         | ND         | ND         | ND      |
| Monobutyl Tin | 16  | UG/L  | ND              | ND         | ND         | ND         | ND      |
| Tributyl tin  |     |       |                 |            |            |            |         |

\* = The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\rm th}$  SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the  $SB\_OUTFALL\_00$  sampling point data and does not include the February  $SB\_SEC\_EFF\_29$  value

|               |                |       | INF   | INF   | INF   | INF   |         |
|---------------|----------------|-------|-------|-------|-------|-------|---------|
|               |                |       | FEB   | MAY   | AUG   | OCT   |         |
| Analyte       | $\mathtt{MDL}$ | Units |       |       |       |       | Average |
|               | ===            | ===== | ===== | ===== | ===== | ===== | =====   |
| Dibutyl tin   | 7              | UG/L  | ND    | ND    | ND    | ND    | ND      |
| Monobutyl Tin | 16             | UG/L  | ND    | ND    | ND    | ND    | ND      |
| Tributyl tin  | 2              | UG/L  | ND    | ND    | ND    | ND    | ND      |

#### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Acid Extractables

From 01-JAN-2006 To 31-DEC-2006

|                                         |      |       | EFF   |         |
|-----------------------------------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
|                                         |      |       | JAN   | MAR   | APR   | MAY   | JUN   | JUL   | AUG   | SEP   | OCT   | NOV   | DEC   |         |
| Analyte                                 | MDL  | Units | Avg   | Average |
|                                         | ==== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | =====   |
| 2-chlorophenol                          | 1.76 | UG/L  | ND      |
| 2,4-dichlorophenol                      | 1.95 | UG/L  | ND      |
| 4-chloro-3-methylphenol                 | 1.34 | UG/L  | ND      |
| 2,4,6-trichlorophenol                   | 1.75 | UG/L  | ND      |
| Pentachlorophenol                       | 5.87 | UG/L  | ND      |
| Phenol                                  | 2.53 | UG/L  | ND      |
| 2-nitrophenol                           | 1.88 | UG/L  | ND      |
| 2,4-dimethylphenol                      | 1.32 | UG/L  | ND      |
| 2,4-dinitrophenol                       | 6.07 | UG/L  | ND      |
| 4-nitrophenol                           | 3.17 | UG/L  | ND      |
| 2-methyl-4,6-dinitrophenol              | 4.29 | UG/L  | ND      |
|                                         | ==== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | =====   |
| Total Chlorinated Phenols               | 5.87 | UG/L  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| Total Non-Chlorinated Phenols           | 6.07 | UG/L  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| Phenols                                 | 6.07 | UG/L  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
| Additional analytes determined;         |      |       |       |       |       |       |       |       |       |       |       |       |       |         |
| ======================================= | ==== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | ===== | =====   |
| 2-methylphenol                          | 1.51 | UG/L  | ND      |
| 3-methylphenol(4-MP is unresolved)      | 4.4  | UG/L  | ND      |
| 4-methylphenol(3-MP is unresolved)      | 4.22 | UG/L  | ND      |
| 2,4,5-trichlorophenol                   | 1.66 | UG/L  | ND      |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February 7<sup>th</sup> SB\_SEC\_EFF\_29 sample.

The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

|                                    |      | S     | B_SEC_I<br>FEB | EFF_29  |                                         |      | SI    | 3_OUTFA<br>FEB | LL_00   |
|------------------------------------|------|-------|----------------|---------|-----------------------------------------|------|-------|----------------|---------|
| Analyte                            | MDL  | Units | Avg            | Average | Analyte                                 | MDL  | Units | Avg            | Average |
|                                    | ==== | ===== | =====          | =====   | ======================================= | ==== | ===== | =====          | =====   |
| 2-chlorophenol                     | 1.76 | UG/L  | ND             | ND      | 2-chlorophenol                          | 1.76 | UG/L  | ND             | ND      |
| 2,4-dichlorophenol                 | 1.95 | UG/L  | ND             | ND      | 2,4-dichlorophenol                      | 1.95 | UG/L  | ND             | ND      |
| 4-chloro-3-methylphenol            | 1.34 | UG/L  | ND             | ND      | 4-chloro-3-methylphenol                 | 1.34 | UG/L  | ND             | ND      |
| 2,4,6-trichlorophenol              | 1.75 | UG/L  | ND             | ND      | 2,4,6-trichlorophenol                   | 1.75 | UG/L  | ND             | ND      |
| Pentachlorophenol                  | 5.87 | UG/L  | ND             | ND      | Pentachlorophenol                       | 5.87 | UG/L  | ND             | ND      |
| Phenol                             | 2.53 | UG/L  | ND             | ND      | Phenol                                  | 2.53 | UG/L  | ND             | ND      |
| 2-nitrophenol                      | 1.88 | UG/L  | ND             | ND      | 2-nitrophenol                           | 1.88 | UG/L  | ND             | ND      |
| 2,4-dimethylphenol                 | 1.32 | UG/L  | ND             | ND      | 2,4-dimethylphenol                      | 1.32 | UG/L  | ND             | ND      |
| 2,4-dinitrophenol                  | 6.07 | UG/L  | ND             | ND      | 2,4-dinitrophenol                       | 6.07 | UG/L  | ND             | ND      |
| 4-nitrophenol                      | 3.17 | UG/L  | ND             | ND      | 4-nitrophenol                           | 3.17 | UG/L  | ND             | ND      |
| 2-methyl-4,6-dinitrophenol         | 4.29 | UG/L  | ND             | ND      | 2-methyl-4,6-dinitrophenol              | 4.29 | UG/L  | ND             | ND      |
|                                    | ==== | ===== | =====          | =====   | ======================================= | ==== | ===== | =====          | =====   |
| Total Chlorinated Phenols          | 5.87 | UG/L  | 0.0            | 0.0     | Total Chlorinated Phenols               | 5.87 | UG/L  | 0.0            | 0.0     |
| Total Non-Chlorinated Phenols      | 6.07 | UG/L  | 0.0            | 0.0     | Total Non-Chlorinated Phenols           | 6.07 | UG/L  | 0.0            | 0.0     |
| Phenols                            | 6.07 | UG/L  | 0.0            | 0.0     | Phenols                                 | 6.07 | UG/L  | 0.0            | 0.0     |
| Additional analytes determined;    |      |       |                |         |                                         |      |       |                |         |
|                                    | ==== | ===== | =====          | =====   | ======================================= | ==== | ===== | =====          | =====   |
| 2-methylphenol                     | 1.51 | UG/L  | ND             | ND      | 2-methylphenol                          | 1.51 | UG/L  | ND             | ND      |
| 3-methylphenol(4-MP is unresolved) | 4.4  | UG/L  | ND             | ND      | 3-methylphenol(4-MP is unresolved)      | 4.4  | UG/L  | ND             | ND      |
| 4-methylphenol(3-MP is unresolved) | 4.22 | UG/L  | ND             | ND      | 4-methylphenol(3-MP is unresolved)      | 4.22 | UG/L  | ND             | ND      |
| 2,4,5-trichlorophenol              | 1.66 | UG/L  | ND             | ND      | 2,4,5-trichlorophenol                   | 1.66 | UG/L  | ND             | ND      |

### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL - Acid Extractables

From 01-JAN-2006 To 31-DEC-2006

|                                    |      |       | INF   | INF   | INF   | INF   |         |
|------------------------------------|------|-------|-------|-------|-------|-------|---------|
|                                    |      |       | FEB   | MAY   | AUG   | OCT   |         |
| Analyte                            | MDL  | Units | Avg   | Avg   | Avg   | Avg   | Average |
|                                    | ==== | ===== | ===== | ===== | ===== | ===== | =====   |
| 2-chlorophenol                     | 1.76 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 2,4-dichlorophenol                 | 1.95 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 4-chloro-3-methylphenol            | 1.34 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 2,4,6-trichlorophenol              | 1.75 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| Pentachlorophenol                  | 5.87 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| Phenol                             | 2.53 | UG/L  | 32.8  | 40.6  | 26.7  | 33.6  | 33.4    |
| 2-nitrophenol                      | 1.88 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 2,4-dimethylphenol                 | 1.32 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 2,4-dinitrophenol                  | 6.07 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 4-nitrophenol                      | 3.17 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 2-methyl-4,6-dinitrophenol         | 4.29 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| Total Chlorinated Phenols          | 5.87 | UG/L  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0     |
|                                    | ==== | ===== | ===== | ===== | ===== | ===== | =====   |
| Total Non-Chlorinated Phenols      | 6.07 | UG/L  | 32.8  | 40.6  | 26.7  | 33.6  | 33.4    |
|                                    | ==== | ===== | ===== | ===== | ===== | ===== | =====   |
| Phenols                            | 6.07 | UG/L  | 32.8  | 40.6  | 26.7  | 33.6  | 33.4    |
|                                    | ==== | ===== | ===== | ===== | ===== | ===== | =====   |
| 2-methylphenol                     | 1.51 | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 3-methylphenol(4-MP is unresolved) | 4.4  | UG/L  | ND    | ND    | ND    | ND    | ND      |
| 4-methylphenol(3-MP is unresolved) | 4.22 | UG/L  | 114.0 | 118.0 | 79.8  | 105.0 | 104.2   |
| 2,4,5-trichlorophenol              | 1.66 | UG/L  | ND    | ND    | ND    | ND    | ND      |

### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

From 01-JAN-2006 To 31-DEC-2006

|                                                       |              |              | SEC_EFF  | # EFF<br>MAY | EFF<br>AUG | EFF<br>OCT | EFF      |
|-------------------------------------------------------|--------------|--------------|----------|--------------|------------|------------|----------|
| Analyte                                               | MDL          | Units        |          | Avq          | Avg        |            | Average  |
|                                                       | =====        | ====         |          | =====        |            | =====      | =====    |
| bis(2-chloroethyl) ether                              | 2.62         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 1,3-dichlorobenzene                                   | 1.65         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 1,2-dichlorobenzene                                   | 1.63         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 1,4-dichlorobenzene                                   | 2.3          | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Bis-(2-chloroisopropyl) ether                         | 8.95         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| N-nitrosodi-n-propylamine                             | 1.63         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Nitrobenzene                                          | 1.52         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Hexachloroethane                                      | 3.55         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Isophorone                                            | 1.93         | UG/L         | ND       | ND           | ND         | ND         | ND<br>ND |
| bis(2-chloroethoxy)methane 1,2,4-trichlorobenzene     | 1.57<br>1.44 | UG/L<br>UG/L | ND<br>ND | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND       |
| Naphthalene                                           | 1.52         | UG/L         | ND<br>ND | ND           | ND         | ND         | ND       |
| Hexachlorobutadiene                                   | 2.87         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Hexachlorocyclopentadiene                             | 2.07         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Acenaphthylene                                        | 2.02         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Dimethyl phthalate                                    | 3.26         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 2,6-dinitrotoluene                                    | 1.93         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Acenaphthene                                          | 2.2          | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 2,4-dinitrotoluene                                    | 1.49         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Fluorene                                              | 2.43         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 4-chlorophenyl phenyl ether                           | 3.62         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Diethyl phthalate                                     | 6.97         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| N-nitrosodiphenylamine                                | 2.96         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 4-bromophenyl phenyl ether                            | 4.04         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Hexachlorobenzene Phenanthrene                        | 4.8<br>4.15  | UG/L<br>UG/L | ND       | ND           | ND         | ND         | ND<br>ND |
| Anthracene                                            | 4.15         | UG/L         | ND<br>ND | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND |
| Di-n-butyl phthalate                                  | 6.49         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| N-nitrosodimethylamine                                | 2.01         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Fluoranthene                                          | 6.9          | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Pyrene                                                | 5.19         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Benzidine                                             | 1.02         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Butyl benzyl phthalate                                | 4.77         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Chrysene                                              | 7.49         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Benzo[A]anthracene                                    | 7.68         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Bis-(2-ethylhexyl) phthalate                          | 10.43        |              | ND       | 17.6         |            |            | ND       |
| Di-n-octyl phthalate                                  | 8.59         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 3,3-dichlorobenzidine                                 | 2.43         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Benzo[K]fluoranthene 3,4-benzo(B)fluoranthene         | 7.36<br>6.63 | UG/L         | ND<br>ND | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND |
| Benzo[A]pyrene                                        | 6.53         | UG/L<br>UG/L | ND<br>ND | ND           | ND         | ND         | ND       |
| Indeno(1,2,3-CD)pyrene                                | 6.27         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Dibenzo(A,H)anthracene                                | 6.19         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Benzo[G,H,I]perylene                                  | 6.5          | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 1,2-diphenylhydrazine                                 | 2.49         | UG/L         | ND       | ND           | ND         | ND         | ND       |
|                                                       | =====        | =====        | =====    | =====        | =====      | =====      | =====    |
| Total Dichlorobenzenes                                | 1.65         | UG/L         | 0.0      | 0.0          | 0.0        | 0.0        | 0.0      |
| Polynuc. Aromatic Hydrocarbons                        | 7.68         | UG/L         | 0.0      | 0.0          | 0.0        | 0.0        | 0.0      |
| =======================================               | =====        |              |          | =====        | =====      | =====      | =====    |
| Base/Neutral Compounds                                | 10.43        |              | 0.0      | 0.0          | 0.0        | 0.0        | 0.0      |
| 1 1 1 1 1 1 1                                         |              |              |          |              |            |            | =====    |
| 1-methylnaphthalene                                   | 2.18         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| 2-methylnaphthalene 2,6-dimethylnaphthalene           | 2.25         | UG/L<br>UG/L | ND       | ND           | ND         | ND         | ND       |
| 2,6-dimetnyinaphthalene<br>2,3,5-trimethylnaphthalene | 3.31<br>4.4  | UG/L         | ND<br>ND | ND<br>ND     | ND<br>ND   | ND<br>ND   | ND<br>ND |
| 1-methylphenanthrene                                  | 6.29         | UG/L         | ND<br>ND | ND           | ND         | ND         | ND<br>ND |
| Benzo[e]pyrene                                        | 7.67         | UG/L         | ND<br>ND | ND           | ND         | ND         | ND       |
| Perylene                                              | 6.61         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| Biphenyl                                              | 2.43         | UG/L         | ND       | ND           | ND         | ND         | ND       |
| - <del>-</del>                                        |              |              |          |              |            |            |          |

<sup>\* =</sup> Contamination from newly-purchased solvent bottle; data for this compound will be considered not reportable it is for review only and is not included in averages.

<sup>#</sup> = The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February 7<sup>th</sup> SB\_SEC\_EFF\_29 sample. The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Base/Neutrals

From 01-JAN-2006 To 31-DEC-2006

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               | INF<br>FEB | INF<br>MAY | INF<br>AUG | INF<br>OCT | INF      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------------|------------|------------|------------|----------|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MDL          | Units         | Avg        | Avg        | Avg        |            | Average  |
| =======================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =====        | =====         | =====      | _          | =====      | =====      | =====    |
| bis(2-chloroethyl) ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.62         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 1,3-dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.65         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 1,2-dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.63         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 1,4-dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3          | UG/L          | 2.7        | 4.8        | 2.4        | 2.4        | 3.1      |
| Bis-(2-chloroisopropyl) ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.95         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| N-nitrosodi-n-propylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.63         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.52         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.55         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.93         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| bis(2-chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.57         | UG/L          | ND         | 1.6        | ND         | ND         | 0.4      |
| 1,2,4-trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.44         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Naphthalene<br>Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.52<br>2.87 | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.07         | UG/L<br>UG/L  | ND         | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND<br>ND |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.02         | UG/L          | ND<br>ND   | ND         | ND         | ND         | ND       |
| Dimethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.26         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 2,6-dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.93         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.2          | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 2,4-dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.49         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.43         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 4-chlorophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.62         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Diethyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.97         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| N-nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.96         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 4-bromophenyl phenyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.04         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8          | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.15         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.04         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Di-n-butyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.49         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| N-nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.01         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9          | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.19         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Benzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.02         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Butyl benzyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.77<br>7.49 | UG/L          | ND         | ND         | ND         | ND         | ND<br>ND |
| Chrysene Benzo[A]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.49         | UG/L<br>UG/L  | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND<br>ND |
| Bis-(2-ethylhexyl) phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.43        |               | ND         | 24.3*      |            |            |          |
| Di-n-octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.59         | UG/L          | ND         | ND         | ND         | ND         | ND<br>ND |
| 3,3-dichlorobenzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.43         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Benzo[K]fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.36         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 3,4-benzo(B)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.63         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Benzo[A]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.53         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Indeno(1,2,3-CD)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.27         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Dibenzo(A,H)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.19         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Benzo[G,H,I]perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.5          | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 1,2-diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.49         | UG/L          | ND         | ND         | ND         | ND         | ND       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =====        |               |            | =====      |            |            |          |
| Total Dichlorobenzenes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.65         | UG/L          | 0.0        | 0.0        | 0.0        | 0.0        | 0.0      |
| Polynuc. Aromatic Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | UG/L          | 0.0        | 0.0        | 0.0        | 0.0        | 0.0      |
| Description of the second seco | 10 42        |               |            | =====      |            |            | 2        |
| Base/Neutral Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.43        |               | 2.7        | 6.4        | 2.4        | 2.4        | 3.5      |
| 1-methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.18         | =====<br>UG/L | =====      | =====      | =====      | =====      | =====    |
| 2-methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.25         | UG/L          | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND       |
| 2,6-dimethylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.31         | UG/L<br>UG/L  | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND         | ND<br>ND |
| 2,3,5-trimethylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4          | UG/L          | ND         | ND         | ND         | ND         | ND       |
| 1-methylphenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.29         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Benzo[e]pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.67         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.61         | UG/L          | ND         | ND         | ND         | ND         | ND       |
| Biphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.43         | UG/L          | ND         | ND         | ND         | ND         | ND       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |            |            |            |            |          |

<sup>\* =</sup> Contamination from newly-purchased solvent bottle; data for this compound will be considered not reportable it is for review only and is not included in averages.

<sup>#</sup> = The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February 7<sup>th</sup> SB\_SEC\_EFF\_29 sample. The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

### SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

From 01-JAN-2006 To 31-DEC-2006

|                                         |        |              | EFF*     | EFF      | EFF      | EFF      | EFF      |
|-----------------------------------------|--------|--------------|----------|----------|----------|----------|----------|
| _                                       |        |              | FEB      | MAY      | AUG      | OCT      |          |
| Analyte                                 | MDL    | Units        | Avg      | Avg      | Avg      |          | Average  |
| Chlamathana                             | 1      | ====         |          | =====    |          | =====    | =====    |
| Chloromethane                           | 1<br>1 | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Vinyl chloride<br>Bromomethane          | 1      | UG/L<br>UG/L | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND | ND<br>ND |
| Chloroethane                            | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Trichlorofluoromethane                  | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Acrolein                                |        | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,1-dichloroethane                      | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Methylene chloride                      | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| trans-1,2-dichloroethene                | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,1-dichloroethene                      | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Acrylonitrile                           | 13.8   | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Chloroform                              | 1      | UG/L         | ND       | 1.8      | ND       | ND       | 0.5      |
| 1,1,1-trichloroethane                   | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Carbon tetrachloride                    | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Benzene                                 | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,2-dichloroethane                      | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Trichloroethene                         | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,2-dichloropropane                     | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Bromodichloromethane                    | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 2-chloroethylvinyl ether                | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| cis-1,3-dichloropropene                 | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Toluene                                 | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| trans-1,3-dichloropropene               | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,1,2-trichloroethane                   | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Tetrachloroethene                       | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Dibromochloromethane                    | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Chlorobenzene                           | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Ethylbenzene                            | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Bromoform                               | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,1,2,2-tetrachloroethane               | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,3-dichlorobenzene                     | 1<br>1 | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,4-dichlorobenzene 1,2-dichlorobenzene | 1      | UG/L<br>UG/L | ND<br>ND | ND<br>ND | ND<br>ND | ND       | ND<br>ND |
|                                         |        | UG/L         | ===== :  |          |          | ND       | ====     |
| Halomethane Purgeable Cmpnds            |        | UG/L         | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| ======================================= |        |              | ===== =  |          |          |          |          |
| Purgeable Compounds                     | 13.8   | UG/L         | 0.0      | 1.8      | 0.0      | 0.0      | 0.5      |
|                                         | ====   | =====        | ===== :  |          | =====    | =====    | =====    |
| Methyl Iodide                           | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Carbon disulfide                        | 1      | UG/L         | ND       | 1.1      | ND       | ND       | 0.3      |
| Acetone                                 | 20     | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Allyl chloride                          | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Methyl tert-butyl ether                 | 1      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Chloroprene                             | 1.4    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,2-dibromoethane                       | 3.3    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 2-butanone                              | 4      | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Methyl methacrylate                     | 4.6    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 2-nitropropane                          | 10     | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 4-methyl-2-pentanone                    | 6.1    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| meta, para xylenes                      | 3.1    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| ortho-xylene                            | 3.4    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Isopropylbenzene                        | 4.4    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Styrene                                 | 4.7    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| Benzyl chloride                         | 7.2    | UG/L         | ND       | ND       | ND       | ND       | ND       |
| 1,2,4-trichlorobenzene                  | 1.44   | UG/L         | ND       | ND       | ND       | ND       | ND       |
|                                         |        |              |          |          |          |          |          |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample. The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

# SOUTH BAY WATER RECLAMATION PLANT SEWAGE ANNUAL Priority Pollutants Purgeables

From 01-JAN-2006 To 31-DEC-2006

|                                                |         |              | T.T.       | T.170      | T.T.       | T.T.       | T.T.      |
|------------------------------------------------|---------|--------------|------------|------------|------------|------------|-----------|
|                                                |         |              | INF<br>FEB | INF<br>MAY | INF<br>AUG | INF<br>OCT | INF       |
| Analyte                                        | MDL     | Units        | Avg        | Avg        | Avg        |            | Average   |
| -                                              |         | =====        |            | _          |            | _          | =====     |
| Chloromethane                                  | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Vinyl chloride                                 | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Bromomethane                                   | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Chloroethane                                   | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Trichlorofluoromethane                         | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Acrolein                                       |         | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,1-dichloroethane                             | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Methylene chloride<br>trans-1,2-dichloroethene | 1       | UG/L<br>UG/L | 2.3<br>ND  | ND<br>ND   | 2.4<br>ND  | 1.6<br>ND  | 1.6<br>ND |
| 1,1-dichloroethene                             | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Acrylonitrile                                  |         | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Chloroform                                     | 1       | UG/L         | 3.5        | 7.2        | 3.9        | 3.6        | 4.6       |
| 1,1,1-trichloroethane                          | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Carbon tetrachloride                           | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Benzene                                        | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,2-dichloroethane                             | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Trichloroethene                                | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,2-dichloropropane                            | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Bromodichloromethane                           | 1       | UG/L         | 1.0        | ND         | ND         | ND         | 0.3       |
| 2-chloroethylvinyl ether                       | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| cis-1,3-dichloropropene                        | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Toluene                                        | 1       | UG/L         | 1.2        | 1.1        | 1.1        | ND         | 0.9       |
| trans-1,3-dichloropropene                      | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,1,2-trichloroethane                          | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Tetrachloroethene Dibromochloromethane         | 1       | UG/L<br>UG/L | ND<br>ND   | ND         | <1.0<br>ND | ND         | 0.0<br>ND |
| Chlorobenzene                                  | 1       | UG/L<br>UG/L | ND<br>ND   | ND<br>ND   | ND         | ND<br>ND   | ND<br>ND  |
| Ethylbenzene                                   | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Bromoform                                      | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,1,2,2-tetrachloroethane                      | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,3-dichlorobenzene                            | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,4-dichlorobenzene                            | 1       | UG/L         | 5.5        | 6.8        | 4.8        | 4.8        | 5.5       |
| 1,2-dichlorobenzene                            | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| =======================================        | ====    | =====        | =====      | =====      | =====      | =====      | =====     |
| Halomethane Purgeable Cmpnds                   | 1       | UG/L         | 1.0        | 0.0        | 0.0        | 0.0        | 0.3       |
|                                                | ====    | =====        | =====      | =====      |            | =====      |           |
| Purgeable Compounds                            |         | UG/L         | 8.0        | 8.3        | 7.4        | 5.2        | 7.2       |
| ***************************************        |         | =====        |            | =====      |            |            |           |
| Methyl Iodide                                  | 1       | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Carbon disulfide                               | 1       | UG/L         | 1.4        | 3.4        | 3.6        | 1.0        | 2.4       |
| Acetone Allyl chloride                         | 20<br>1 | UG/L         | 395        | 173        | 159        | 104<br>ND  | 208<br>ND |
| Methyl tert-butyl ether                        | 1       | UG/L<br>UG/L | ND<br>ND   | ND<br>ND   | ND<br>ND   | ND         | ND<br>ND  |
| Chloroprene                                    | 1.4     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,2-dibromoethane                              | 3.3     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 2-butanone                                     | 4       | UG/L         | 5.8        | 21.2       | 28.1       | ND         | 13.8      |
| Methyl methacrylate                            | 4.6     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 2-nitropropane                                 | 10      | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 4-methyl-2-pentanone                           | 6.1     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| meta,para xylenes                              | 3.1     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| ortho-xylene                                   | 3.4     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Isopropylbenzene                               | 4.4     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Styrene                                        | 4.7     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| Benzyl chloride                                | 7.2     | UG/L         | ND         | ND         | ND         | ND         | ND        |
| 1,2,4-trichlorobenzene                         | 1.44    | UG/L         | ND         | ND         | ND         | ND         | ND        |
|                                                |         |              |            |            |            |            |           |

From 01-JAN-2006 To 31-DEC-2006

| Analyte:                                                                                                                                                                                                                                                                                                                                                              | MDL                                                                         | Units                                        | Equiv                                                                                                             | INF<br>JAN<br>P326896                                 | INF<br>FEB<br>P328141                                         | INF<br>MAR<br>P333231                                               | INF<br>APR<br>P336781                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|
| 2,3,7,8-tetra CDD                                                                                                                                                                                                                                                                                                                                                     | ====<br>500                                                                 | PG/L                                         | 1.000                                                                                                             | ======= = ND                                          | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,7,8-penta CDD                                                                                                                                                                                                                                                                                                                                                   | 500                                                                         | PG/L                                         | 0.500                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,4,7,8_hexa_CDD                                                                                                                                                                                                                                                                                                                                                  | 500                                                                         | PG/L                                         | 0.100                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,6,7,8-hexa CDD                                                                                                                                                                                                                                                                                                                                                  | 500                                                                         | PG/L                                         | 0.100                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,7,8,9-hexa CDD                                                                                                                                                                                                                                                                                                                                                  | 500                                                                         | PG/L                                         | 0.100                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                       | 500                                                                         | PG/L                                         | 0.010                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| octa CDD                                                                                                                                                                                                                                                                                                                                                              | 1000                                                                        | PG/L                                         | 0.001                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 2,3,7,8-tetra CDF                                                                                                                                                                                                                                                                                                                                                     | 250                                                                         | PG/L                                         | 0.100                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,7,8-penta CDF                                                                                                                                                                                                                                                                                                                                                   | 500                                                                         | PG/L                                         | 0.050                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 2,3,4,7,8-penta CDF                                                                                                                                                                                                                                                                                                                                                   | 500                                                                         | PG/L                                         | 0.500                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,4,7,8-hexa CDF                                                                                                                                                                                                                                                                                                                                                  | 500                                                                         | PG/L                                         | 0.100                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,6,7,8-hexa CDF                                                                                                                                                                                                                                                                                                                                                  | 500                                                                         | PG/L                                         | 0.100                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,7,8,9-hexa CDF                                                                                                                                                                                                                                                                                                                                                  | 500                                                                         | PG/L                                         | 0.100                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 2,3,4,6,7,8-hexa CDF                                                                                                                                                                                                                                                                                                                                                  | 500                                                                         | PG/L                                         | 0.100                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                       | 500                                                                         | PG/L                                         | 0.010                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| 1,2,3,4,7,8,9-hepta CDF                                                                                                                                                                                                                                                                                                                                               | 500                                                                         | PG/L                                         | 0.010                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
| octa CDF                                                                                                                                                                                                                                                                                                                                                              | 1000                                                                        | PG/L                                         | 0.001                                                                                                             | ND                                                    | ND                                                            | ND                                                                  | ND                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                              |                                                                                                                   |                                                       |                                                               |                                                                     |                                                                           |
| Analyte:                                                                                                                                                                                                                                                                                                                                                              | MDL                                                                         | Units                                        | Equiv                                                                                                             | INF<br>MAY<br>P338009                                 | INF<br>JUN<br>P343972                                         | INF<br>JUL<br>P347277                                               | INF<br>AUG<br>P348705                                                     |
| =======================================                                                                                                                                                                                                                                                                                                                               | ====                                                                        | =======                                      | =====                                                                                                             | MAY<br>P338009                                        | JUN<br>P343972                                                | JUL<br>P347277                                                      | AUG<br>P348705                                                            |
| 2,3,7,8-tetra CDD                                                                                                                                                                                                                                                                                                                                                     | ====<br>500                                                                 | ======<br>PG/L                               | 1.000                                                                                                             | MAY<br>P338009<br>=================================== | JUN<br>P343972<br>=======<br>ND                               | JUL<br>P347277<br>======<br>ND                                      | AUG<br>P348705<br>=======<br>ND                                           |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD                                                                                                                                                                                                                                                                                                                              | ====<br>500<br>500                                                          | PG/L                                         | 1.000<br>0.500                                                                                                    | MAY<br>P338009<br>======== = ND<br>ND                 | JUN<br>P343972<br><br>ND<br>ND                                | JUL<br>P347277<br>======<br>ND<br>ND                                | AUG<br>P348705<br>===== ND<br>ND                                          |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD                                                                                                                                                                                                                                                                                                      | ====<br>500<br>500<br>500                                                   | PG/L<br>PG/L<br>PG/L                         | 1.000<br>0.500<br>0.100                                                                                           | MAY<br>P338009<br>=================================== | JUN<br>P343972<br>===== ND<br>ND<br>ND                        | JUL<br>P347277<br>====== ND<br>ND<br>ND                             | AUG<br>P348705<br>=======<br>ND<br>ND<br>ND                               |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD                                                                                                                                                                                                                                                                              | ====<br>500<br>500<br>500<br>500                                            | PG/L<br>PG/L<br>PG/L<br>PG/L                 | 1.000<br>0.500<br>0.100<br>0.100                                                                                  | MAY<br>P338009<br>=================================== | JUN<br>P343972<br><br>ND<br>ND<br>ND<br>ND                    | JUL<br>P347277<br>======<br>ND<br>ND<br>ND<br>ND                    | AUG<br>P348705<br>=======<br>ND<br>ND<br>ND<br>ND                         |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD<br>1,2,3,7,8,9-hexa CDD                                                                                                                                                                                                                                                      | ====<br>500<br>500<br>500<br>500<br>500                                     | PG/L<br>PG/L<br>PG/L<br>PG/L<br>PG/L<br>PG/L | 1.000<br>0.500<br>0.100<br>0.100<br>0.100                                                                         | MAY<br>P338009<br>=================================== | JUN<br>P343972<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND       | JUL<br>P347277<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND       | AUG<br>P348705<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND             |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD<br>1,2,3,7,8,9-hexa CDD<br>1,2,3,4,6,7,8-hepta CDD                                                                                                                                                                                                                           | ====<br>500<br>500<br>500<br>500<br>500<br>500                              | PG/L<br>PG/L<br>PG/L<br>PG/L<br>PG/L<br>PG/L | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.100                                                                | MAY P338009 ND       | JUN<br>P343972<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | JUL<br>P347277<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | AUG P348705 ======= ND                      |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD<br>1,2,3,7,8,9-hexa CDD<br>1,2,3,4,6,7,8-hepta CDD<br>octa CDD                                                                                                                                                                                                               | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000                      | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.010                                                       | MAY<br>P338009<br>=================================== | JUN<br>P343972<br><br>ND<br>ND<br>ND<br>ND<br>ND<br>ND        | JUL<br>P347277<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | AUG<br>P348705<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND       |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD<br>1,2,3,7,8,9-hexa CDD<br>1,2,3,4,6,7,8-hepta CDD<br>octa CDD<br>2,3,7,8-tetra CDF                                                                                                                                                                                          | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250               | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.100                                     | MAY P338009 ND       | JUN P343972 ND            | JUL<br>P347277<br>                                                  | AUG P348705 ======= ND                      |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD cota CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF                                                                                                                                                                                           | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000                      | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.100<br>0.050                            | MAY P338009  ND   | JUN<br>P343972<br><br>ND<br>ND<br>ND<br>ND<br>ND<br>ND        | JUL<br>P347277<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | AUG<br>P348705<br>=======<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD<br>1,2,3,7,8,9-hexa CDD<br>1,2,3,4,6,7,8-hepta CDD<br>octa CDD<br>2,3,7,8-tetra CDF                                                                                                                                                                                          | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250<br>500        | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.100                                     | MAY P338009                                           | JUN P343972 ND            | JUL P347277                                                         | AUG P348705 ======= ND                |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 2,3,4,7,8-penta CDF                                                                                                                                                   | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250<br>500<br>500 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | =====<br>1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.100<br>0.050<br>0.500                   | MAY P338009                                           | JUN P343972 ND            | JUL P347277 ======== ND         | AUG P348705 ======== ND               |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF                                                                                                                                     | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250<br>500<br>500  | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | =====<br>1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.050<br>0.500<br>0.100                   | MAY P338009 ===================================       | JUN P343972 ND            | JUL P347277 ======== ND         | AUG P348705 ======== ND               |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF                                                                                                                 | ====<br>500<br>500<br>500<br>500<br>500<br>1000<br>250<br>500<br>500<br>500 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | =====<br>1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.100<br>0.050<br>0.500<br>0.100          | MAY P338009 ===================================       | JUN P343972 ND            | JUL P347277 ==================================                      | AUG P348705 ====================================                          |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF                                                          | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>250<br>500<br>500<br>500  | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | <br>1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.100<br>0.500<br>0.500<br>0.100<br>0.100      | MAY P338009 ===================================       | JUN P343972 ND            | JUL P347277 ==================================                      | AUG P348705 ====================================                          |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>250<br>500<br>500<br>500  | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.001<br>0.050<br>0.500<br>0.100<br>0.100<br>0.100 | MAY P338009                                           | JUN P343972 ND            | JUL P347277                                                         | AUG P348705 ======== ND               |

Above are permit required CDD/CDF isomers. nd= not detected

From 01-JAN-2006 To 31-DEC-2006

|                                         |      |         |       | INF      | INF      | INF      | INF      |
|-----------------------------------------|------|---------|-------|----------|----------|----------|----------|
|                                         |      |         |       | SEP      | OCT      | NOV      | DEC      |
| Analyte:                                | MDL  | Units   | Equiv | P355264  | P355799  | P361463  | P365622  |
| ======================================= | ==== | ======= | ===== | ======== | ======== | ======== | ======== |
| 2,3,7,8-tetra CDD                       | 500  | PG/L    | 1.000 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD                     | 500  | PG/L    | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| octa CDD                                | 1000 | PG/L    | 0.001 | ND       | ND       | ND       | ND       |
| 2,3,7,8-tetra CDF                       | 250  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDF                     | 500  | PG/L    | 0.050 | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF                     | 500  | PG/L    | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8,9-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| octa CDF                                | 1000 | PG/L    | 0.001 | ND       | ND       | ND       | ND       |

Above are permit required CDD/CDF isomers. nd= not detected NA= not analyzed  $\,$  NS= not sampled  $\,$ 

From 01-JAN-2006 To 31-DEC-2006

Effluent Limit (TCDD): 0.39 pg/L (30-day Average)

|                                         |      |       |       | EFF     | SEC_EFF* | EFF     | EFF     |
|-----------------------------------------|------|-------|-------|---------|----------|---------|---------|
|                                         |      |       |       | JAN     | FEB*     | MAR     | APR     |
| Analyte:                                | MDL  | Units | Equiv | P326621 | P328161  | P333234 | P336785 |
| ======================================= | ==== |       | ===== |         |          |         |         |
| 2,3,7,8-tetra CDD                       | 500  | PG/L  | 1.000 | ND      | ND       | ND      | ND      |
| 1,2,3,7,8-penta CDD                     | 500  | PG/L  | 0.500 | ND      | ND       | ND      | ND      |
| 1,2,3,4,7,8_hexa_CDD                    | 500  | PG/L  | 0.100 | ND      | ND       | ND      | ND      |
| 1,2,3,6,7,8-hexa CDD                    | 500  | PG/L  | 0.100 | ND      | ND       | ND      | ND      |
| 1,2,3,7,8,9-hexa CDD                    | 500  | PG/L  | 0.100 | ND      | ND       | ND      | ND      |
| 1,2,3,4,6,7,8-hepta CDD                 | 500  | PG/L  | 0.010 | ND      | ND       | ND      | ND      |
| octa CDD                                | 1000 | PG/L  | 0.001 | ND      | ND       | ND      | ND      |
| 2,3,7,8-tetra CDF                       | 250  | PG/L  | 0.100 | ND      | ND       | ND      | ND      |
| 1,2,3,7,8-penta CDF                     | 500  | PG/L  | 0.050 | ND      | ND       | ND      | ND      |
| 2,3,4,7,8-penta CDF                     | 500  | PG/L  | 0.500 | ND      | ND       | ND      | ND      |
| 1,2,3,4,7,8-hexa CDF                    | 500  | PG/L  | 0.100 | ND      | ND       | ND      | ND      |
| 1,2,3,6,7,8-hexa CDF                    | 500  | PG/L  | 0.100 | ND      | ND       | ND      | ND      |
| 1,2,3,7,8,9-hexa CDF                    | 500  | PG/L  | 0.100 | ND      | ND       | ND      | ND      |
| 2,3,4,6,7,8-hexa CDF                    | 500  | PG/L  | 0.100 | ND      | ND       | ND      | ND      |
| 1,2,3,4,6,7,8-hepta CDF                 | 500  | PG/L  | 0.010 | ND      | ND       | ND      | ND      |
| 1,2,3,4,7,8,9-hepta CDF                 | 500  | PG/L  | 0.010 | ND      | ND       | ND      | ND      |
| octa CDF                                | 1000 | PG/L  | 0.001 | ND      | ND       | ND      | ND      |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February 7<sup>th</sup> SB\_SEC\_EFF\_29 sample. The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

Effluent Limit (TCDD): 0.39 pg/L (30-day Average)

|                                         |      |       |       | EFF<br>MAY | EFF<br>JUN | EFF<br>JUL | EFF<br>AUG |
|-----------------------------------------|------|-------|-------|------------|------------|------------|------------|
| Analyte:                                | MDL  | Units | Equiv | P338014    | P343976    | P347281    | P348710    |
| ======================================= | ==== |       | ===== |            |            |            |            |
| 2,3,7,8-tetra CDD                       | 500  | PG/L  | 1.000 | ND         | ND         | ND         | ND         |
| 1,2,3,7,8-penta CDD                     | 500  | PG/L  | 0.500 | ND         | ND         | ND         | ND         |
| 1,2,3,4,7,8_hexa_CDD                    | 500  | PG/L  | 0.100 | ND         | ND         | ND         | ND         |
| 1,2,3,6,7,8-hexa CDD                    | 500  | PG/L  | 0.100 | ND         | ND         | ND         | ND         |
| 1,2,3,7,8,9-hexa CDD                    | 500  | PG/L  | 0.100 | ND         | ND         | ND         | ND         |
| 1,2,3,4,6,7,8-hepta CDD                 | 500  | PG/L  | 0.010 | ND         | ND         | ND         | ND         |
| octa CDD                                | 1000 | PG/L  | 0.001 | ND         | ND         | ND         | ND         |
| 2,3,7,8-tetra CDF                       | 250  | PG/L  | 0.100 | ND         | ND         | ND         | ND         |
| 1,2,3,7,8-penta CDF                     | 500  | PG/L  | 0.050 | ND         | ND         | ND         | ND         |
| 2,3,4,7,8-penta CDF                     | 500  | PG/L  | 0.500 | ND         | ND         | ND         | ND         |
| 1,2,3,4,7,8-hexa CDF                    | 500  | PG/L  | 0.100 | ND         | ND         | ND         | ND         |
| 1,2,3,6,7,8-hexa CDF                    | 500  | PG/L  | 0.100 | ND         | ND         | ND         | ND         |
| 1,2,3,7,8,9-hexa CDF                    | 500  | PG/L  | 0.100 | ND         | ND         | ND         | ND         |
| 2,3,4,6,7,8-hexa CDF                    | 500  | PG/L  | 0.100 | ND         | ND         | ND         | ND         |
| 1,2,3,4,6,7,8-hepta CDF                 | 500  | PG/L  | 0.010 | ND         | ND         | ND         | ND         |
| 1,2,3,4,7,8,9-hepta CDF                 | 500  | PG/L  | 0.010 | ND         | ND         | ND         | ND         |
| octa CDF                                | 1000 | PG/L  | 0.001 | ND         | ND         | ND         | ND         |

Above are permit required CDD/CDF isomers. nd= not detected

From 01-JAN-2006 To 31-DEC-2006

Effluent Limit (TCDD): 0.39 pg/L (30-day Average)

|                                         |      |         |       | EFF                                     | EFF                                     | EFF     | EFF      |
|-----------------------------------------|------|---------|-------|-----------------------------------------|-----------------------------------------|---------|----------|
|                                         |      |         |       | SEP                                     | OCT                                     | NOV     | DEC      |
| Analyte:                                | MDL  | Units   | Equiv | P355268                                 | P355804                                 | P361467 | P365626  |
| ======================================= | ==== | ======= | ===== | ======================================= | ======================================= | ======= | ======== |
| 2,3,7,8-tetra CDD                       | 500  | PG/L    | 1.000 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,7,8-penta CDD                     | 500  | PG/L    | 0.500 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,4,7,8_hexa_CDD                    | 500  | PG/L    | 0.100 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,6,7,8-hexa CDD                    | 500  | PG/L    | 0.100 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,7,8,9-hexa CDD                    | 500  | PG/L    | 0.100 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,4,6,7,8-hepta CDD                 | 500  | PG/L    | 0.010 | ND                                      | ND                                      | ND      | ND       |
| octa CDD                                | 1000 | PG/L    | 0.001 | ND                                      | ND                                      | ND      | ND       |
| 2,3,7,8-tetra CDF                       | 250  | PG/L    | 0.100 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,7,8-penta CDF                     | 500  | PG/L    | 0.050 | ND                                      | ND                                      | ND      | ND       |
| 2,3,4,7,8-penta CDF                     | 500  | PG/L    | 0.500 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,4,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,7,8,9-hexa CDF                    | 500  | PG/L    | 0.100 | ND                                      | ND                                      | ND      | ND       |
| 2,3,4,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,4,6,7,8-hepta CDF                 | 500  | PG/L    | 0.010 | ND                                      | ND                                      | ND      | ND       |
| 1,2,3,4,7,8,9-hepta CDF                 | 500  | PG/L    | 0.010 | ND                                      | ND                                      | ND      | ND       |
| octa CDF                                | 1000 | PG/L    | 0.001 | ND                                      | ND                                      | ND      | ND       |

Above are permit required CDD/CDF isomers. nd= not detected

 ${\tt NA=}$  not analyzed  ${\tt NS=}$  not sampled

From 01-JAN-2006 To 31-DEC-2006

|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                              |                                                                                                                            | INF                                                 | INF                                                    | INF                                                 | INF                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                              |                                                                                                                            | TCCD                                                | TCCD                                                   | TCCD                                                | TCCD                                                         |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                              |                                                                                                                            | JAN                                                 | FEB                                                    | MAR                                                 | APR                                                          |
| Analyte:                                                                                                                                                                                                                                                                                                                                                                  | MDL<br>====                                                                                      | Units                                        | Equiv                                                                                                                      | P326896                                             | P328141                                                | P333231                                             | P336781                                                      |
| 2,3,7,8-tetra CDD                                                                                                                                                                                                                                                                                                                                                         | 500                                                                                              | PG/L                                         | 1.000                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,7,8-penta CDD                                                                                                                                                                                                                                                                                                                                                       | 500                                                                                              | PG/L                                         | 0.500                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,4,7,8_hexa_CDD                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                              | PG/L                                         | 0.100                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,6,7,8-hexa CDD                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                              | PG/L                                         | 0.100                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,7,8,9-hexa CDD                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                              | PG/L                                         | 0.100                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,4,6,7,8-hepta CDD                                                                                                                                                                                                                                                                                                                                                   | 500                                                                                              | PG/L                                         | 0.010                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| octa CDD                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                             | PG/L                                         | 0.001                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 2,3,7,8-tetra CDF                                                                                                                                                                                                                                                                                                                                                         | 250                                                                                              | PG/L                                         | 0.100                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,7,8-penta CDF                                                                                                                                                                                                                                                                                                                                                       | 500                                                                                              | PG/L                                         | 0.050                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 2,3,4,7,8-penta CDF                                                                                                                                                                                                                                                                                                                                                       | 500                                                                                              | PG/L                                         | 0.500                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,4,7,8-hexa CDF                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                              | PG/L                                         | 0.100                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,6,7,8-hexa CDF                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                              | PG/L                                         | 0.100                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,7,8,9-hexa CDF                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                              | PG/L                                         | 0.100                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 2,3,4,6,7,8-hexa CDF                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                              | PG/L                                         | 0.100                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,4,6,7,8-hepta CDF                                                                                                                                                                                                                                                                                                                                                   | 500                                                                                              | PG/L                                         | 0.010                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| 1,2,3,4,7,8,9-hepta CDF                                                                                                                                                                                                                                                                                                                                                   | 500                                                                                              | PG/L                                         | 0.010                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
| octa CDF                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                             | PG/L                                         | 0.001                                                                                                                      | ND                                                  | ND                                                     | ND                                                  | ND                                                           |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                              |                                                                                                                            | INF                                                 | INF                                                    | INF                                                 | INF                                                          |
|                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                              |                                                                                                                            | TCCD                                                | TCCD                                                   | TCCD                                                | TCCD                                                         |
| Analysta:                                                                                                                                                                                                                                                                                                                                                                 | MDT                                                                                              | IInita                                       | Equity                                                                                                                     | MAY                                                 | JUN                                                    | JUL                                                 | AUG                                                          |
| Analyte:                                                                                                                                                                                                                                                                                                                                                                  | MDL                                                                                              | Units                                        | Equiv                                                                                                                      | MAY<br>P338009                                      | JUN<br>P343972                                         | JUL<br>P347277                                      |                                                              |
| -                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  |                                              | _                                                                                                                          | MAY<br>P338009                                      | JUN<br>P343972                                         | JUL<br>P347277                                      | AUG<br>P348705                                               |
|                                                                                                                                                                                                                                                                                                                                                                           | ====                                                                                             | =======                                      | =====                                                                                                                      | MAY<br>P338009                                      | JUN<br>P343972                                         | JUL<br>P347277<br>======                            | AUG<br>P348705                                               |
| 2,3,7,8-tetra CDD                                                                                                                                                                                                                                                                                                                                                         | ====<br>500                                                                                      | ======<br>PG/L                               | 1.000                                                                                                                      | MAY<br>P338009<br>======== ==<br>ND                 | JUN<br>P343972<br>==================================== | JUL<br>P347277<br>======                            | AUG<br>P348705<br>====== ND                                  |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD                                                                                                                                                                                                                                                                                                                                  | ====<br>500<br>500                                                                               | PG/L                                         | 1.000<br>0.500                                                                                                             | MAY<br>P338009<br>======= ==<br>ND<br>ND            | JUN<br>P343972<br>====== = = ND<br>ND                  | JUL<br>P347277<br>===== ND<br>ND                    | AUG<br>P348705<br>===== ND<br>ND                             |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD                                                                                                                                                                                                                                                                                                          | ====<br>500<br>500<br>500                                                                        | PG/L<br>PG/L<br>PG/L                         | 1.000<br>0.500<br>0.100                                                                                                    | MAY<br>P338009<br>======= ==<br>ND<br>ND<br>ND      | JUN<br>P343972<br>======= = = ND<br>ND<br>ND<br>ND     | JUL<br>P347277<br><br>ND<br>ND<br>ND                | AUG<br>P348705<br><br>ND<br>ND<br>ND                         |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD                                                                                                                                                                                                                                                                                  | ====<br>500<br>500<br>500<br>500<br>500                                                          | PG/L<br>PG/L<br>PG/L<br>PG/L                 | 1.000<br>0.500<br>0.100<br>0.100                                                                                           | MAY P338009  ND ND ND ND ND ND ND                   | JUN<br>P343972<br>==================================== | JUL<br>P347277<br>ND<br>ND<br>ND<br>ND              | AUG<br>P348705<br><br>ND<br>ND<br>ND<br>ND                   |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD<br>1,2,3,7,8,9-hexa CDD                                                                                                                                                                                                                                                          | 500<br>500<br>500<br>500<br>500<br>500                                                           | PG/L<br>PG/L<br>PG/L<br>PG/L<br>PG/L<br>PG/L | 1.000<br>0.500<br>0.100<br>0.100                                                                                           | MAY P338009  ND       | JUN P343972 PND ND ND ND ND ND ND ND ND                | JUL P347277 ND ND ND ND ND ND                       | AUG<br>P348705<br><br>ND<br>ND<br>ND<br>ND<br>ND             |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD<br>1,2,3,7,8,9-hexa CDD<br>1,2,3,4,6,7,8-hepta CDD                                                                                                                                                                                                                               | 500<br>500<br>500<br>500<br>500<br>500                                                           | PG/L<br>PG/L<br>PG/L<br>PG/L<br>PG/L<br>PG/L | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.100                                                                         | MAY P338009  ND | JUN P343972 PND ND    | JUL P347277 ND ND ND ND ND ND ND ND ND              | AUG P348705 ND                    |
| 2,3,7,8-tetra CDD<br>1,2,3,7,8-penta CDD<br>1,2,3,4,7,8_hexa_CDD<br>1,2,3,6,7,8-hexa CDD<br>1,2,3,7,8,9-hexa CDD<br>1,2,3,4,6,7,8-hepta CDD<br>octa CDD                                                                                                                                                                                                                   | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000                                           | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | ====<br>1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.010                                                        | MAY P338009                                         | JUN P343972 ND           | JUL P347277  ND    | AUG<br>P348705<br><br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD octa CDD 2,3,7,8-tetra CDF                                                                                                                                                                                                                   | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250                                    | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.100                                              | MAY P338009                                         | JUN P343972 ND     | JUL P347277  ND | AUG<br>P348705<br><br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,4,6,7,8-hepta CDD 1,2,3,4,6,7,8-hepta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF                                                                                                                                                                                                     | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250<br>500                             | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.100<br>0.050                                     | MAY P338009  ND | JUN P343972 PND ND N  | JUL P347277 ND  | AUG P348705 ND           |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,4,7,8-penta CDF 2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF                                                                                                          | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250<br>500<br>500                      | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.001<br>0.050<br>0.500                                     | MAY P338009  ND | JUN P343972 PND ND N  | JUL P347277 ND  | AUG P348705 ND           |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF                                                                | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250<br>500<br>500<br>500<br>500        | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.001<br>0.050<br>0.050<br>0.500<br>0.100<br>0.100          | MAY P338009 ======== == == == == == == == == == ==  | JUN P343972 PND ND N  | JUL P347277  ND | AUG P348705 ND           |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>1000<br>250<br>500<br>500<br>500<br>500<br>500 | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.001<br>0.050<br>0.500<br>0.100<br>0.100<br>0.100          | MAY P338009                                         | JUN P343972  ND    | JUL P347277  ND | AUG P348705                                                  |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,7,8,9-hexa CDF 1,2,3,4,6,7,8-hexa CDF 1,2,3,4,6,7,8-hexa CDF                  | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>250<br>500<br>500<br>500                       | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.001<br>0.050<br>0.500<br>0.100<br>0.100<br>0.100<br>0.100 | MAY P338009                                         | JUN P343972 ND     | JUL P347277  ND | AUG P348705                                                  |
| 2,3,7,8-tetra CDD 1,2,3,7,8-penta CDD 1,2,3,4,7,8_hexa_CDD 1,2,3,6,7,8-hexa CDD 1,2,3,7,8,9-hexa CDD 1,2,3,4,6,7,8-hepta CDD 0cta CDD 2,3,7,8-tetra CDF 1,2,3,7,8-penta CDF 1,2,3,4,7,8-penta CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,6,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF 1,2,3,4,7,8-hexa CDF | ====<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                              | PG/L PG/L PG/L PG/L PG/L PG/L PG/L PG/L      | 1.000<br>0.500<br>0.100<br>0.100<br>0.100<br>0.010<br>0.001<br>0.001<br>0.050<br>0.500<br>0.100<br>0.100<br>0.100          | MAY P338009                                         | JUN P343972  ND    | JUL P347277  ND | AUG P348705                                                  |

Above are permit required CDD/CDF isomers. nd= not detected

From 01-JAN-2006 To 31-DEC-2006

|                                         |      |         |       | INF      | INF      | INF     | INF     |
|-----------------------------------------|------|---------|-------|----------|----------|---------|---------|
|                                         |      |         |       | TCCD     | TCCD     | TCCD    | TCCD    |
|                                         |      |         |       | SEP      | OCT      | NOV     | DEC     |
| Analyte:                                | MDL  | Units   | Equiv | P355264  | P355799  | P361463 | P365622 |
| ======================================= | ==== | ======= | ===== | ======== | ======== |         |         |
| 2,3,7,8-tetra CDD                       | 500  | PG/L    | 1.000 | ND       | ND       | ND      | ND      |
| 1,2,3,7,8-penta CDD                     | 500  | PG/L    | 0.500 | ND       | ND       | ND      | ND      |
| 1,2,3,4,7,8_hexa_CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND      | ND      |
| 1,2,3,6,7,8-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND      | ND      |
| 1,2,3,7,8,9-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND      | ND      |
| 1,2,3,4,6,7,8-hepta CDD                 | 500  | PG/L    | 0.010 | ND       | ND       | ND      | ND      |
| octa CDD                                | 1000 | PG/L    | 0.001 | ND       | ND       | ND      | ND      |
| 2,3,7,8-tetra CDF                       | 250  | PG/L    | 0.100 | ND       | ND       | ND      | ND      |
| 1,2,3,7,8-penta CDF                     | 500  | PG/L    | 0.050 | ND       | ND       | ND      | ND      |
| 2,3,4,7,8-penta CDF                     | 500  | PG/L    | 0.500 | ND       | ND       | ND      | ND      |
| 1,2,3,4,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND      | ND      |
| 1,2,3,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND      | ND      |
| 1,2,3,7,8,9-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND      | ND      |
| 2,3,4,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND      | ND      |
| 1,2,3,4,6,7,8-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND       | ND      | ND      |
| 1,2,3,4,7,8,9-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND       | ND      | ND      |
| octa CDF                                | 1000 | PG/L    | 0.001 | ND       | ND       | ND      | ND      |

Above are permit required CDD/CDF isomers. nd= not detected

From 01-JAN-2006 To 31-DEC-2006

|                                         |      |         |       | EFF      | SEC_EFF*                                | EFF                                     | EFF     |
|-----------------------------------------|------|---------|-------|----------|-----------------------------------------|-----------------------------------------|---------|
|                                         |      |         |       | TCCD     | TCCD                                    | TCCD                                    | TCCD    |
|                                         |      |         |       | JAN      | FEB*                                    | MAR                                     | APR     |
| Analyte:                                | MDL  | Units   | Equiv | P326621  | P328161                                 | P333234                                 | P336785 |
| ======================================= | ==== | ======= | ===== | ======== | ======================================= | ======================================= | ======= |
| 2,3,7,8-tetra CDD                       | 500  | PG/L    | 1.000 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,7,8-penta CDD                     | 500  | PG/L    | 0.500 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,4,7,8_hexa_CDD                    | 500  | PG/L    | 0.100 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,6,7,8-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,7,8,9-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,4,6,7,8-hepta CDD                 | 500  | PG/L    | 0.010 | ND       | ND                                      | ND                                      | ND      |
| octa CDD                                | 1000 | PG/L    | 0.001 | ND       | ND                                      | ND                                      | ND      |
| 2,3,7,8-tetra CDF                       | 250  | PG/L    | 0.100 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,7,8-penta CDF                     | 500  | PG/L    | 0.050 | ND       | ND                                      | ND                                      | ND      |
| 2,3,4,7,8-penta CDF                     | 500  | PG/L    | 0.500 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,4,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,7,8,9-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND                                      | ND                                      | ND      |
| 2,3,4,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,4,6,7,8-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND                                      | ND                                      | ND      |
| 1,2,3,4,7,8,9-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND                                      | ND                                      | ND      |
| octa CDF                                | 1000 | PG/L    | 0.001 | ND       | ND                                      | ND                                      | ND      |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February 7<sup>th</sup> SB\_SEC\_EFF\_29 sample. The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

|                                         |      |         |       | EFF      | EFF      | EFF      | EFF      |
|-----------------------------------------|------|---------|-------|----------|----------|----------|----------|
|                                         |      |         |       | TCCD     | TCCD     | TCCD     | TCCD     |
|                                         |      |         |       | MAY      | JUN      | JUL      | AUG      |
| Analyte:                                | MDL  | Units   | Equiv | P338014  | P343976  | P347281  | P348710  |
| ======================================= | ==== | ======= | ===== | ======== | ======== | ======== | ======== |
| 2,3,7,8-tetra CDD                       | 500  | PG/L    | 1.000 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD                     | 500  | PG/L    | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| octa CDD                                | 1000 | PG/L    | 0.001 | ND       | ND       | ND       | ND       |
| 2,3,7,8-tetra CDF                       | 250  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDF                     | 500  | PG/L    | 0.050 | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF                     | 500  | PG/L    | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8,9-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| octa CDF                                | 1000 | PG/L    | 0.001 | ND       | ND       | ND       | ND       |

Above are permit required CDD/CDF isomers.

nd= not detected

### From 01-JAN-2006 To 31-DEC-2006

|                                         |      |         |       | EFF      | EFF      | EFF      | EFF      |
|-----------------------------------------|------|---------|-------|----------|----------|----------|----------|
|                                         |      |         |       | TCCD     | TCCD     | TCCD     | TCCD     |
|                                         |      |         |       | SEP      | OCT      | NOV      | DEC      |
| Analyte:                                | MDL  | Units   | Equiv | P355268  | P355804  | P361467  | P365626  |
| ======================================= | ==== | ======= | ===== | ======== | ======== | ======== | ======== |
| 2,3,7,8-tetra CDD                       | 500  | PG/L    | 1.000 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDD                     | 500  | PG/L    | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8_hexa_CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDD                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDD                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| octa CDD                                | 1000 | PG/L    | 0.001 | ND       | ND       | ND       | ND       |
| 2,3,7,8-tetra CDF                       | 250  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8-penta CDF                     | 500  | PG/L    | 0.050 | ND       | ND       | ND       | ND       |
| 2,3,4,7,8-penta CDF                     | 500  | PG/L    | 0.500 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,7,8,9-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 2,3,4,6,7,8-hexa CDF                    | 500  | PG/L    | 0.100 | ND       | ND       | ND       | ND       |
| 1,2,3,4,6,7,8-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| 1,2,3,4,7,8,9-hepta CDF                 | 500  | PG/L    | 0.010 | ND       | ND       | ND       | ND       |
| octa CDF                                | 1000 | PG/L    | 0.001 | ND       | ND       | ND       | ND       |

Above are permit required CDD/CDF isomers. nd= not detected  $\,$ 

From 01-JAN-2006 To 31-DEC-2006

|                |          | Aluminum   |               | dity        |              | Barium       |  |  |
|----------------|----------|------------|---------------|-------------|--------------|--------------|--|--|
| MDL/units      |          | ıg/L       |               | TU          | .039         | ug/L         |  |  |
|                | Inf.     | Eff.       | Inf.          | Eff.        | Inf.         | Eff.         |  |  |
| JANUARY -2006  | 784      | ND         | =======<br>NR | 0.8         | 86.1         | 52.7         |  |  |
| FEBRUARY -2006 | 1110     | 233*       | 148.0         | 4.0         | 83.0         | 60.0*        |  |  |
| MARCH -2006    | 1190     | 143        | NR            | 1.2         | 125.0        | 63.7         |  |  |
| APRIL -2006    | 802      | 264        | NR<br>NR      | 1.1         | 83.0         | 56.3         |  |  |
| MAY -2006      | 844      | 184        | 177.0         | 1.1         | 94.5         | 50.8         |  |  |
| JUNE -2006     | 783      | 89         | NR            | 2.1         | 77.8         | 48.7         |  |  |
| JULY -2006     | 1000     | 201        | NR<br>NR      | 0.8         | 95.5         | 53.4         |  |  |
| AUGUST -2006   | 704      | 529        | 133.0         | 1.0         | 81.6         | 52.0         |  |  |
| SEPTEMBER-2006 | 1000     | 137        | NR            | 0.8         | 110.0        | 48.5         |  |  |
| OCTOBER -2006  | 966      | 137        | 141.0         | 1.3         | 70.6         | 43.4         |  |  |
|                |          | 28         |               | 1.3         |              |              |  |  |
| NOVEMBER -2006 | 1010     | 28<br>47   | NR            | 2.0         | 72.6<br>69.5 | 39.2<br>32.8 |  |  |
| DECEMBER -2006 | 736      |            | NR<br>======  |             | 09.5         |              |  |  |
|                | 011      |            |               |             |              |              |  |  |
| Average:       | 911      | 160        | 149.8         | 1.4         | 87.4         | 49.2         |  |  |
|                | Mangan   |            |               | ron         | Cob          |              |  |  |
| MDL/units      | .24      | ug/L       | 1.7           | ug/L        | .162         | ug/L         |  |  |
| =========      | Inf.     | Eff.       | Inf.          | Eff.        | Inf.         | Eff.         |  |  |
| JANUARY -2006  | 57.1     | 10.7       | 365           | 370         | 0.8          | ND           |  |  |
| FEBRUARY -2006 | 38.6     | 10.7       | 333           | 370<br>356* | 1.0          | 1*           |  |  |
| MARCH -2006    | 141.0    | 10.4       | 327           | 313         | 1.0          | 0.4          |  |  |
| APRIL -2006    | 60.8     | 14.7       | 298           | 328         | ND           | 0.4          |  |  |
| MAY -2006      | 62.4     | 29.6       | 349           | 350         | 0.2          | ND           |  |  |
| JUNE -2006     | 65.8     | 78.5       | 284           | 280         | ND           | 0.3          |  |  |
| JULY -2006     | 56.2     | 70.5       | 366           | 310         | 0.4          | 0.3          |  |  |
| AUGUST -2006   | 38.4     | 6.9        | 240           | 379         | 0.4          | 0.2          |  |  |
| SEPTEMBER-2006 | 40.2     | 12.2       | 369           | 379         | 0.7          | 0.5          |  |  |
|                | 31.1     | 11.4       |               |             |              |              |  |  |
| OCTOBER -2006  |          |            | 309           | 324         | ND           | ND           |  |  |
| NOVEMBER -2006 | 44.2     | 4.4<br>6.6 | 288           | 252         | NR           | ND           |  |  |
| DECEMBER -2006 | 38.1     |            | 273           | 233         | NR<br>====== | 1.6          |  |  |
| Average:       | 56.2     | 23.4       | 317           | 315         | 0.5          | 0.3          |  |  |
|                |          |            |               |             |              |              |  |  |
|                | Calci    |            | _             | esium       |              | hium         |  |  |
| MDL/units      | .04      | mg/L       | .014          | mg/L        | .002         | mg/L         |  |  |
|                | Inf.     | Eff.       | Inf.          | Eff.        | Inf.         | Eff.         |  |  |
|                | ======== |            | =======       |             |              |              |  |  |
| JANUARY -2006  | 84.6     | 75.3       | 33.9          | 31.4        | 0.027        | 0.027        |  |  |
| FEBRUARY -2006 | 49.8     | 57.0*      | 22.2          | 25.0*       | 0.029        | 0.030*       |  |  |
| MARCH -2006    | 57.8     | 53.9       | 23.4          | 21.9        | 0.034        | 0.036        |  |  |
| APRIL -2006    | 63.4     | 64.5       | 26.4          | 26.4        | 0.029        | 0.034        |  |  |
| MAY -2006      | 60.6     | 59.9       | 24.6          | 23.5        | 0.036        | 0.031        |  |  |
| JUNE -2006     | 68.6     | 61.7       | NR            | 26.4        | 0.025        | 0.021        |  |  |
| JULY -2006     | 60.7     | 61.5       | NR            | 24.7        | 0.028        | 0.029        |  |  |
| AUGUST -2006   | 74.6     | 65.8       | 31.5          | 28.1        | 0.032        | 0.029        |  |  |
| SEPTEMBER-2006 | 67.0     | 55.8       | 27.7          | 25.2        | 0.030        | 0.025        |  |  |
| OCTOBER -2006  | 56.2     | 52.5       | 26.1          | 24.2        | 0.025        | 0.024        |  |  |
| NOVEMBER -2006 | 50.2     | 53.3       | NR            | 24.1        | 0.025        | 0.022        |  |  |
| DECEMBER -2006 | 53.3     | 54.2       | NR            | 20.7        | 0.026        | 0.027        |  |  |
| =========      | ======== |            | =======       |             | =======      |              |  |  |
| Average:       | 62.2     | 59.9       | 27.0          | 25.1        | 0.029        | 0.028        |  |  |

<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\text{th}}$  SB\_SEC\_EFF\_29 sample. The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value

ND=not detected; NS=not sampled; NA=not analyzed; NR = not required

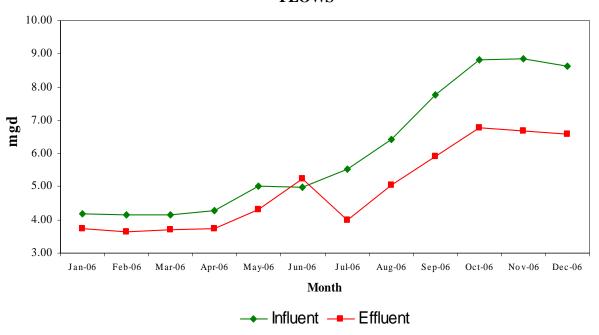
#### SOUTH BAY WATER RECLAMATION PLANT

From 01-JAN-2006 To 31-DEC-2006

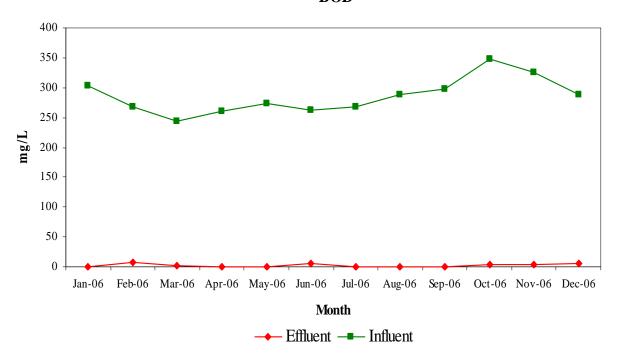
| MD/units       | Sod<br>1 |              | Potas   |              |
|----------------|----------|--------------|---------|--------------|
| MD/unics       | Inf.     | mg/L<br>Eff. | Inf.    | mg/L<br>Eff. |
| =========      | ======== | =====        | ======= | ======       |
| JANUARY -2006  | 186      | 191          | 17.5    | 14.6         |
| FEBRUARY -2006 | 151      | 167*         | 13.6    | 13.0*        |
| MARCH -2006    | 145      | 146          | 12.5    | 11.2         |
| APRIL -2006    | 163      | 177          | 16.7    | 14.8         |
| MAY -2006      | 189      | 164          | 19.4    | 14.4         |
| JUNE -2006     | 162      | 173          | 17.6    | 15.4         |
| JULY -2006     | 158      | 165          | 16.4    | 14.7         |
| AUGUST -2006   | 181      | 191          | 18.5    | 16.9         |
| SEPTEMBER-2006 | 168      | 167          | 17.1    | 14.1         |
| OCTOBER -2006  | 172      | 164          | 16.6    | 14.4         |
| NOVEMBER -2006 | 145      | 155          | 16.0    | 14.0         |
| DECEMBER -2006 | 142      | 149          | 17.3    | 16.1         |
| =========      | ======== | =====        | ======= | ======       |
| Average:       | 164      | 167          | 16.6    | 14.6         |

|                | Molybo   | lenum | Vana    | dium   | Total Dissolved<br>Solids |            |  |  |  |  |
|----------------|----------|-------|---------|--------|---------------------------|------------|--|--|--|--|
|                |          |       |         |        | Sol                       | ıas        |  |  |  |  |
| MD/units       | .122     | ug/L  | .48     | ug/L   | 42                        | mg/L       |  |  |  |  |
|                | Inf.     | Eff.  | Inf.    | Eff.   | Inf.                      | Eff.       |  |  |  |  |
| =========      | ======== | ===== | ======= | ====== | =======                   | ======     |  |  |  |  |
| JANUARY -2006  | 2.1      | 4.1   | 2.7     | ND     | 905                       | 873        |  |  |  |  |
| FEBRUARY -2006 | 0.9      | 2.3*  | 1.7     | 1.3*   | 899                       | 858        |  |  |  |  |
| MARCH -2006    | 4.9      | 4.0   | 2.1     | 1.1    | 891                       | 882        |  |  |  |  |
| APRIL -2006    | 3.7      | 4.6   | 1.5     | 1.0    | 888                       | 879        |  |  |  |  |
| MAY -2006      | 5.6      | 3.9   | 1.1     | 0.7    | 895                       | 893        |  |  |  |  |
| JUNE -2006     | 2.5      | 2.7   | 1.6     | ND     | 911                       | 894        |  |  |  |  |
| JULY -2006     | 5.6      | 2.6   | 2.0     | 1.0    | 913                       | 895        |  |  |  |  |
| AUGUST -2006   | 4.6      | 2.2   | 1.8     | 1.1    | 879                       | 876        |  |  |  |  |
| SEPTEMBER-2006 | 2.8      | 3.4   | 2.2     | 1.1    | 881                       | 873        |  |  |  |  |
| OCTOBER -2006  | 3.1      | 5.6   | ND      | ND     | 869                       | 848        |  |  |  |  |
| NOVEMBER -2006 | NR       | 2.7   | NR      | ND     | 800                       | 785        |  |  |  |  |
| DECEMBER -2006 | NR       | 1.2   | NR      | ND     | 770                       | 758        |  |  |  |  |
| =========      | ======== | ===== | ======= | ====== | =======                   | ========== |  |  |  |  |
| Average:       | 3.6      | 3.4   | 1.7     | 0.5    | 875                       | 860        |  |  |  |  |

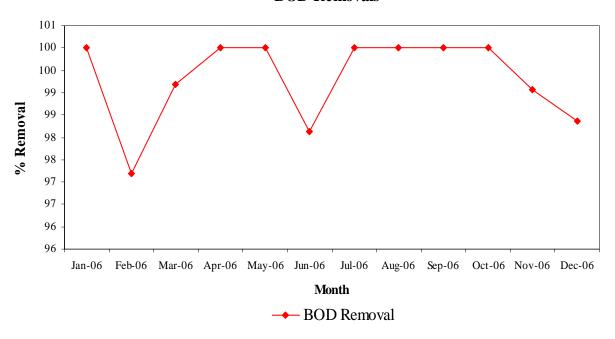
<sup>\* =</sup> The normal sampling point (SB\_Outfall\_00) for NPDES Compliance Monitoring was off-line from February 4 to February 25, 2006 due to equipment failure, an alternate location was used (SB\_SEC\_EFF\_29) as a compliance point. The February 2006 average above is of the February  $7^{\rm th}$  SB\_SEC\_EFF\_29 sample. The annual average were calculated with the SB\_OUTFALL\_00 sampling point data and does not include the February SB\_SEC\_EFF\_29 value


ND=not detected; NS=not sampled; NA=not analyzed; NR = not required

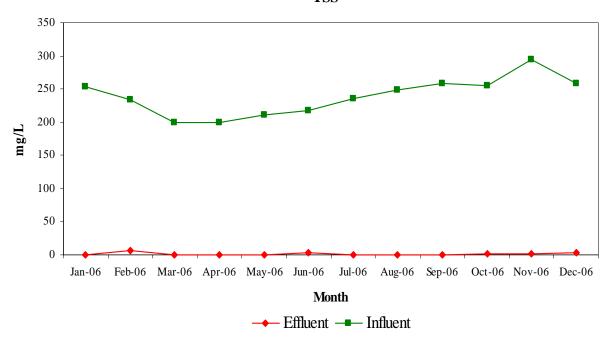
#### B. Influent and Effluent Graphs


Graphs of monthly averages for permit parameters with measurable concentration averages.

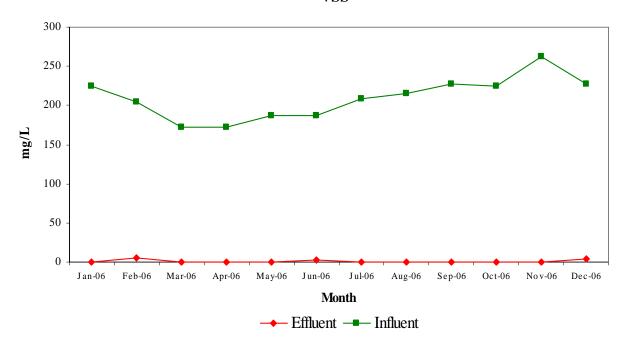
Where possible, the influent and effluent values of a given parameter have been included on the same graph so that removals and other relationships are readily apparent. Please note that many of the graphs are on expanded scales. That is, they normally don't go to zero concentrations but show, in magnified scale, that range of concentrations where variation takes place. This makes differences and some trends obvious that might normally not be noticed. However, it also provides the temptation to interpret minor changes or trends as being of more significance than they are. Frequent reference to the scales and the actual differences in concentrations is therefore necessary.


# 2006 Monthly Averages FLOWS

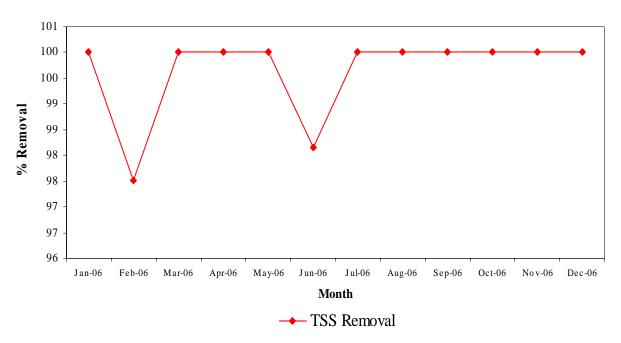



# 2006 Monthly Averages BOD

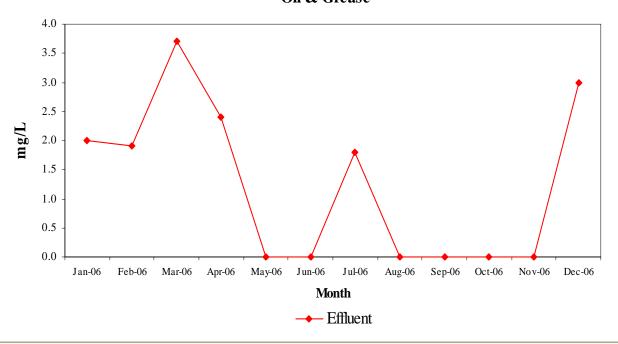



# 2006 Monthly Averages BOD Removals

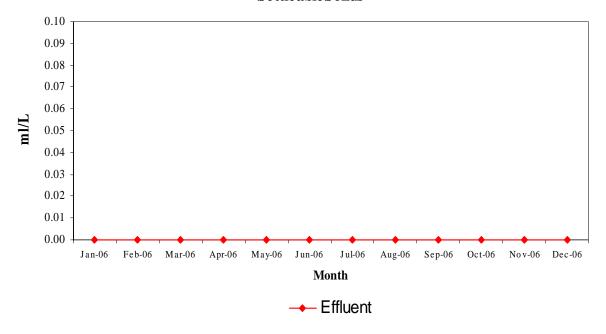



# 2006 Monthly Averages TSS

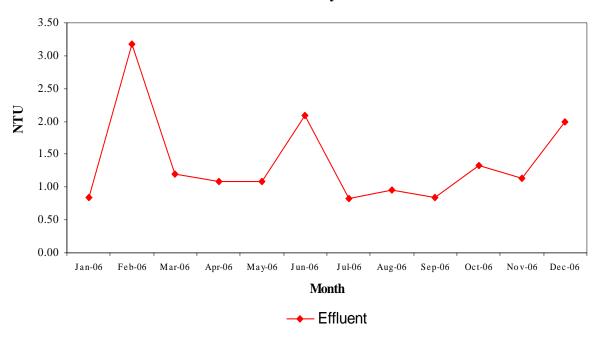



# 2006 Monthly Averages VSS

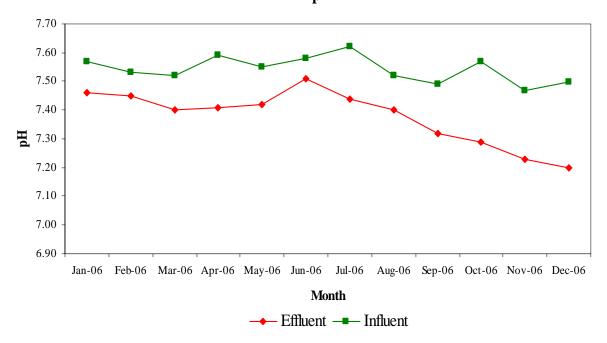



# 2006 Monthly Averages TSS Removals

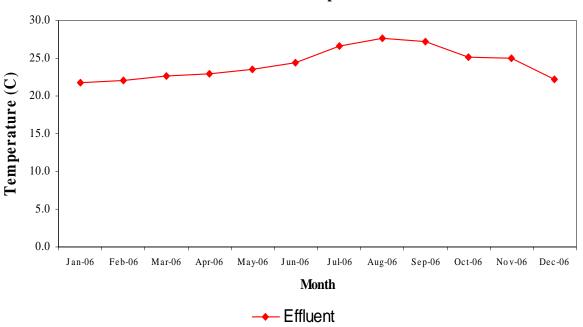



# 2006 Monthly Averages Oil & Grease

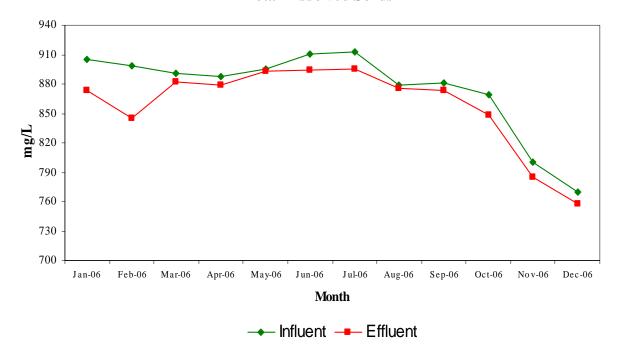



# 2006 Monthly Averages SettleableSolids

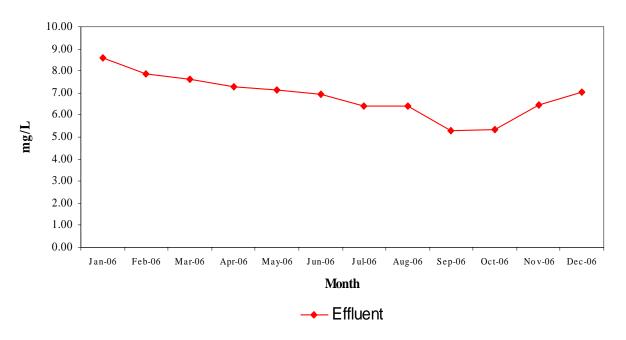



# 2006 Monthly Averages Turbidity

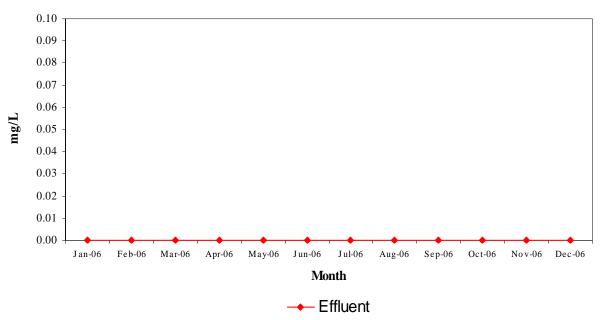



# 2006 Monthly Averages pH

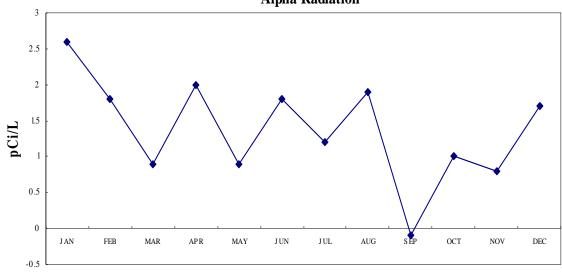



# **2006 Monthly Averages Outfall Temperature**




# 2006 Monthly Averages Total Dissolved Solids

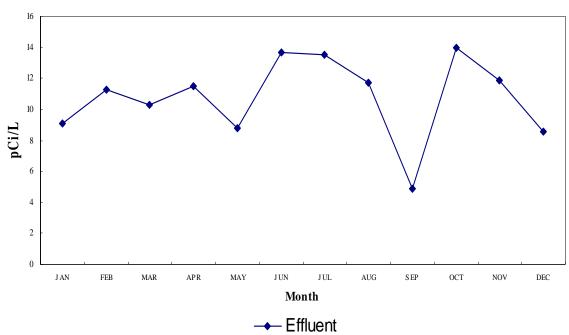



# 2006 Monthly Averages Dissolved Oxygen

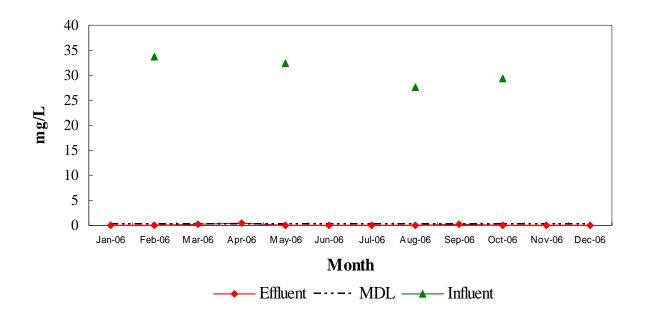


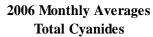
# 2006 Monthly Averages Residual Chlorine

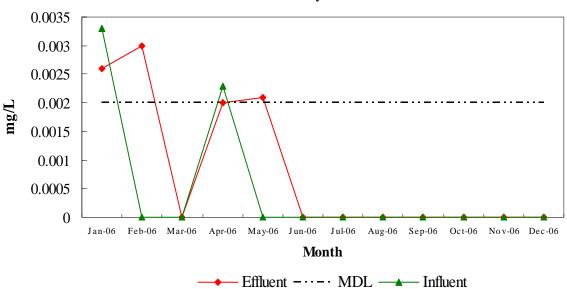



# 2006 Monthly Averages Alpha Radiation

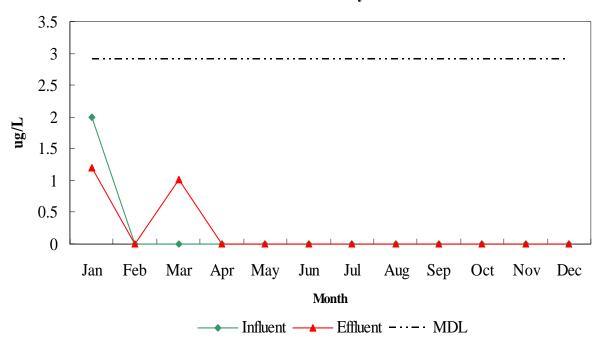



Month

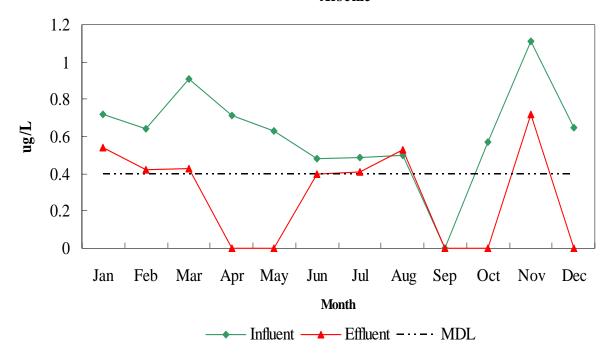

→ Effluent


#### 2006 Monthly Averages Beta Radiation

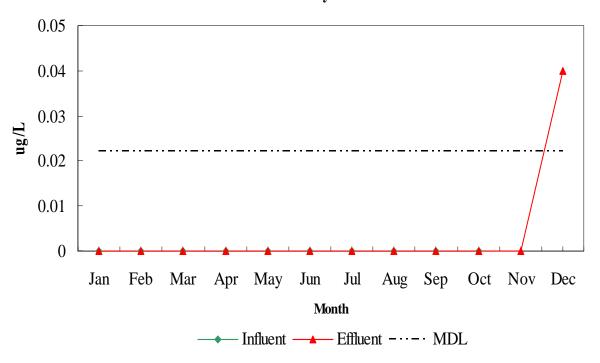



# 2006 Monthly Averages Ammonia-N

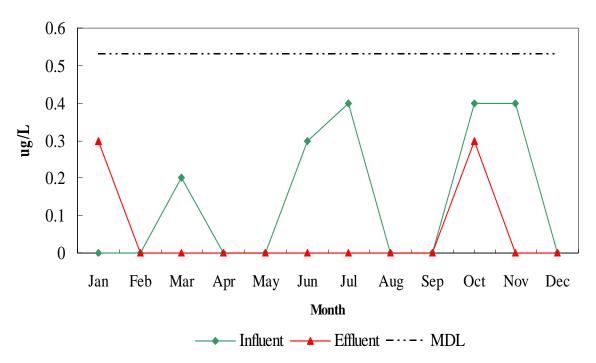




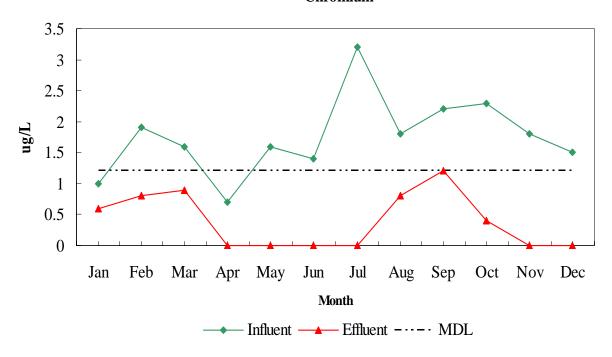




# 2006 Monthly Averages Antimony

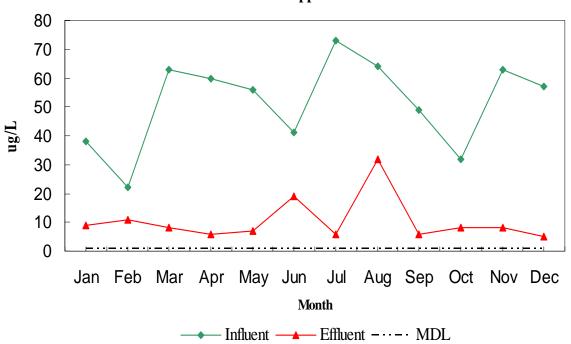



# 2006 Monthly Averages Arsenic

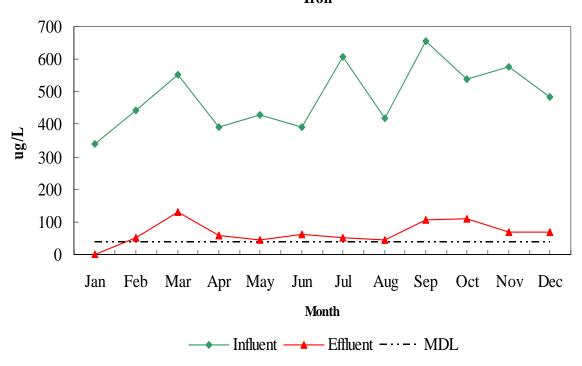



# 2006 Monthly Averages Beryllium

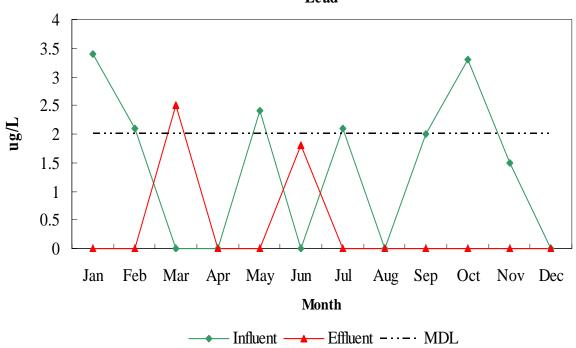



# 2006 Monthly Averages Cadmium

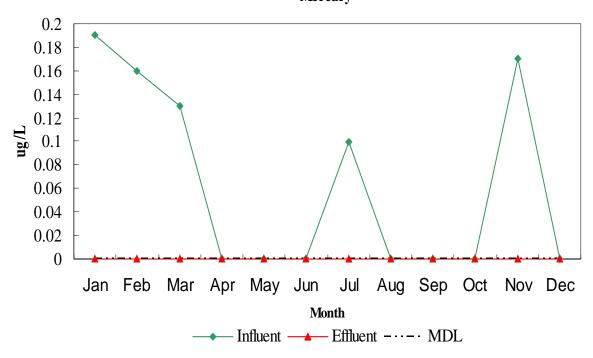



# 2006 Monthly Averages Chromium

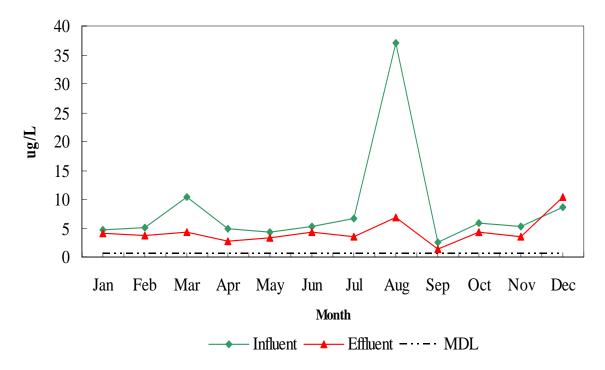



# 2006 Monthly Averages Copper

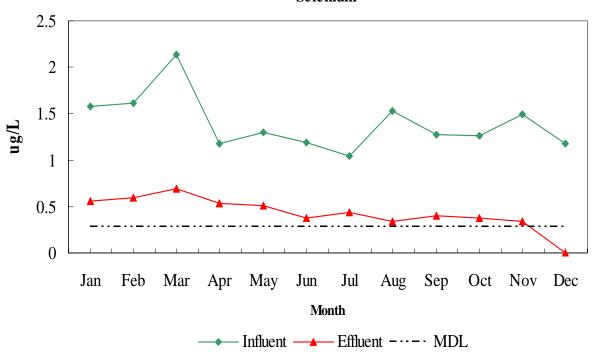



# 2006 Monthly Averages Iron

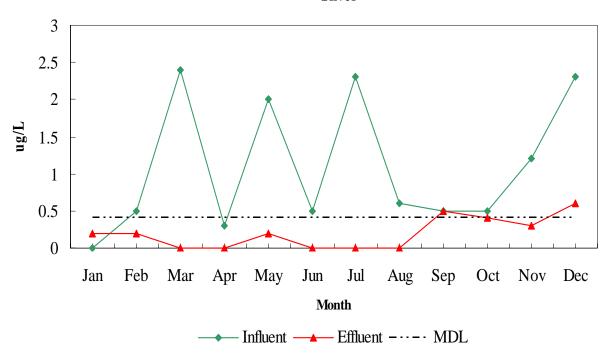



# 2006 Monthly Averages Lead

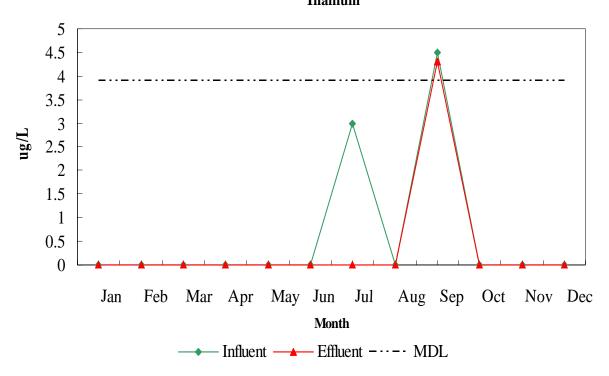



#### 2006 Monthly Averages Mercury

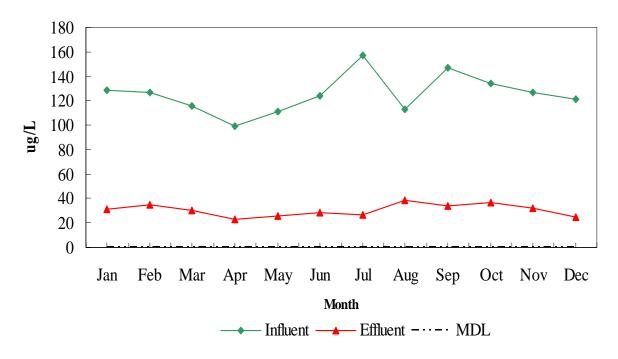



#### 2006 Monthly Averages Nickel

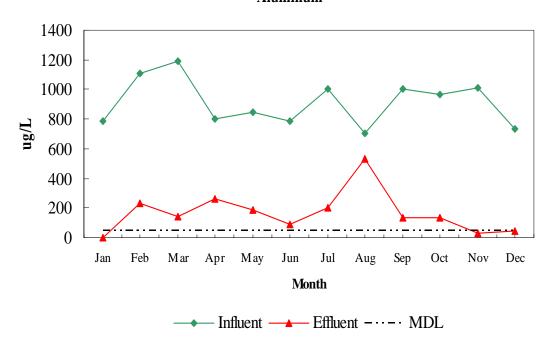



# 2006 Monthly Averages Selenium

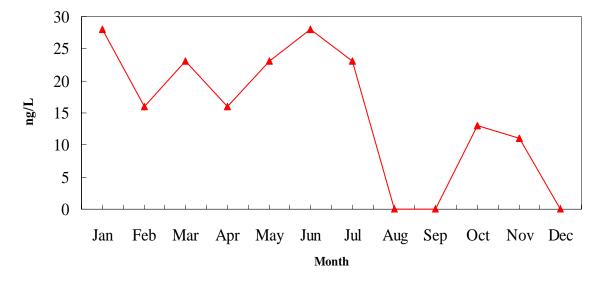



# 2006 Monthly Averages Silver

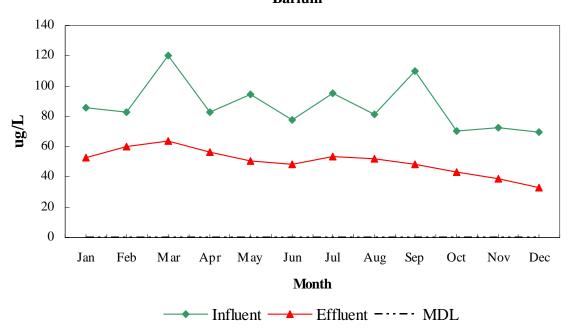



#### 2006 Monthly Averages Thallium

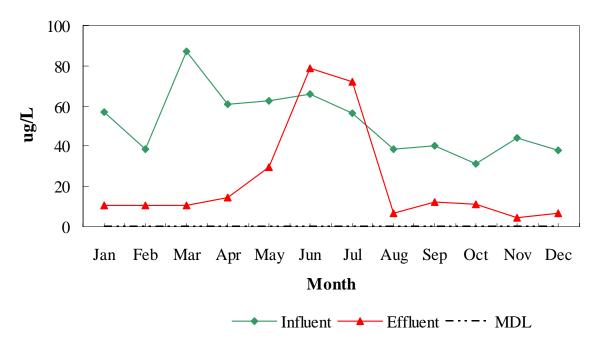


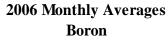

#### 2006 Monthly Averages Zinc

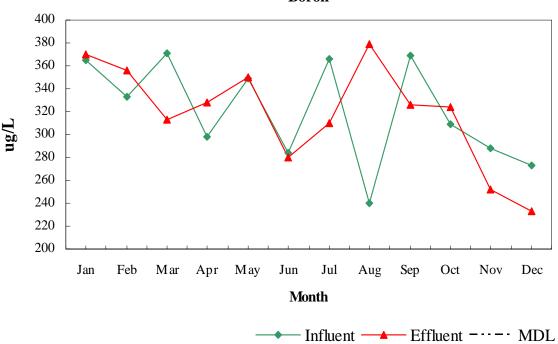



#### 2006 Monthly Averages Aluminum

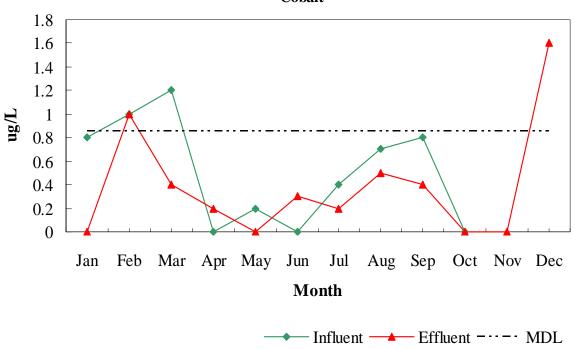



#### 2006 Monthly Averages Total Chlorinated Hydrocarbons

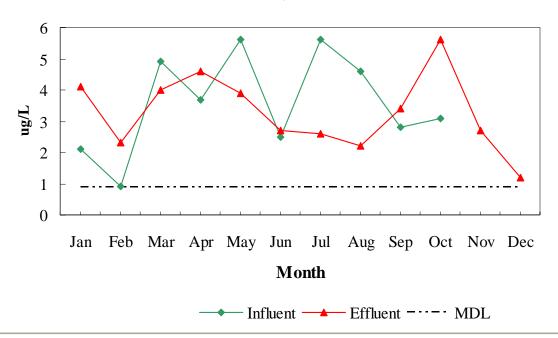




#### 2006 Monthly Averages Barium

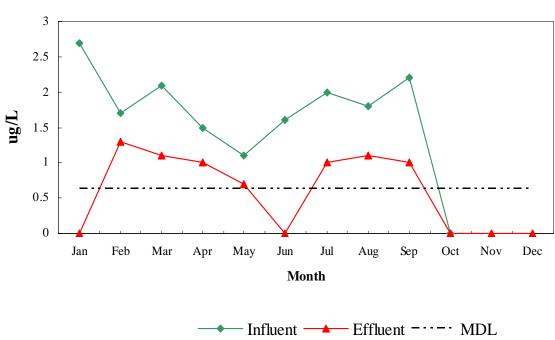


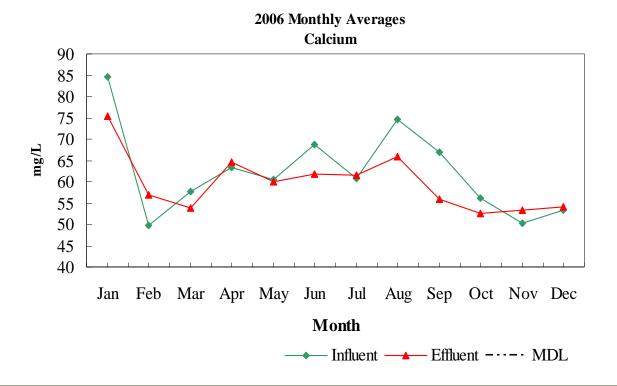

# 2006 Monthly Averages Manganese

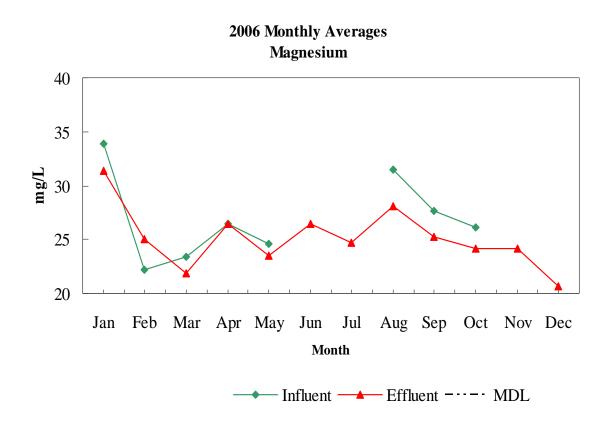




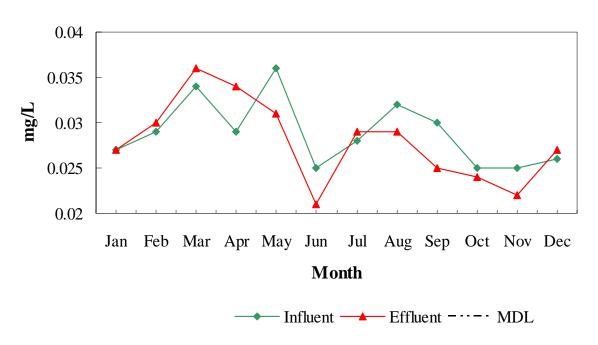




# 2006 Monthly Averages Cobalt

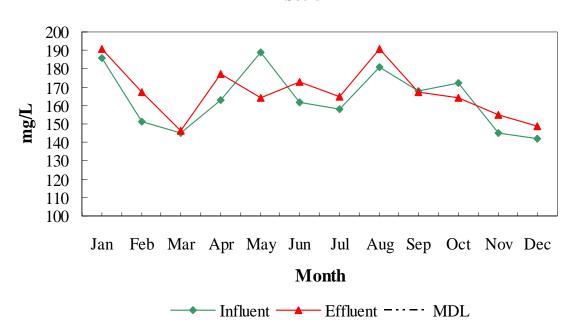


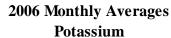


# 2006 Monthly Averages Molybdenum

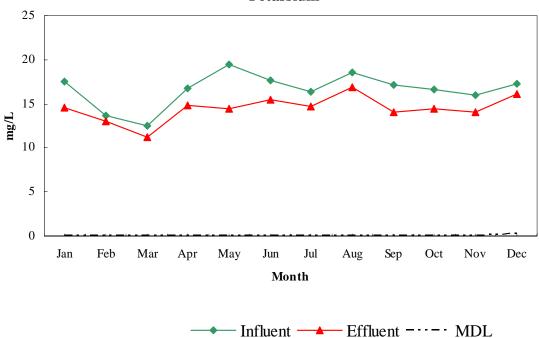



# 2006 Monthly Averages Vanadium

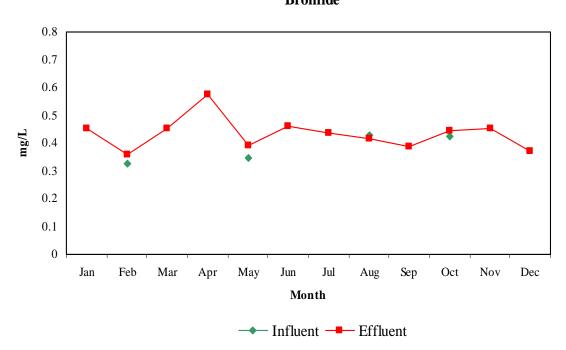




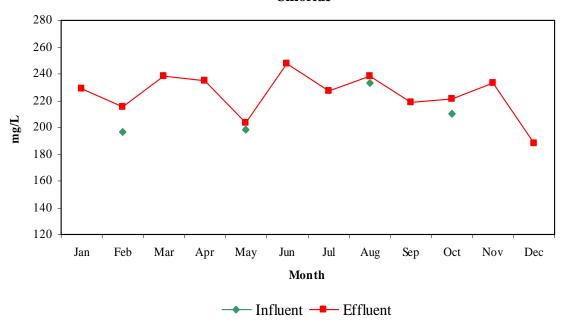





#### 2006 Monthly Averages Lithium

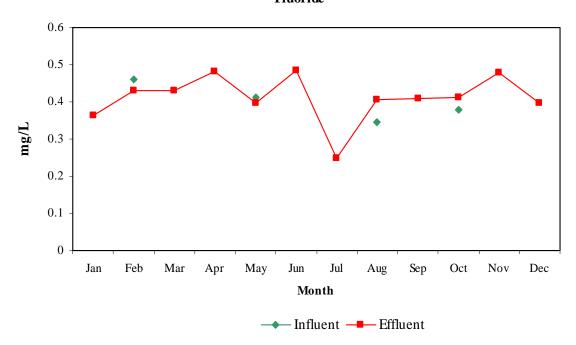


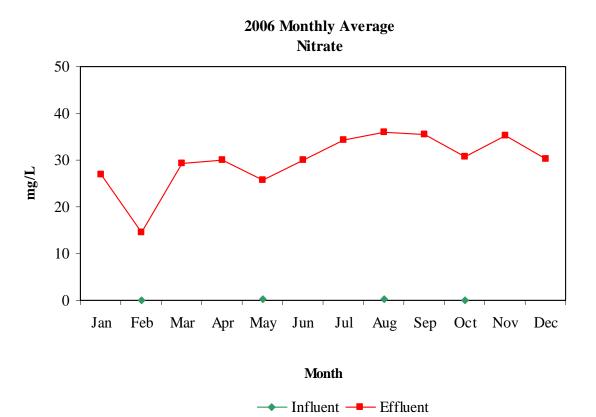

#### 2006 Monthly Averages Sodium

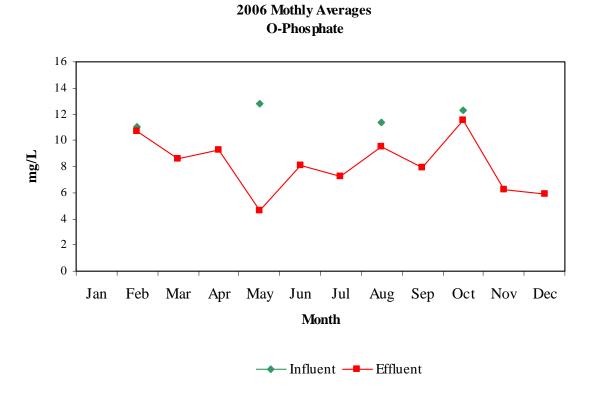


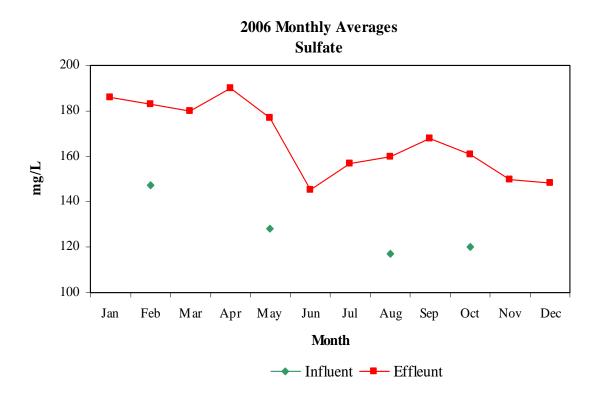






# 2006 Monthly Averages Bromide





# 2006 Monthly Averages Chloride




# 2006 Monthly Averages Fluoride









| C. | Daily Values of Selected Parameters.                                                                                                                           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Daily values of selected parameters (e.g. TSS, Flow, TSS Removals, etc.) are tabulated and presented graphically; statistical summary information is provided. |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |
|    |                                                                                                                                                                |

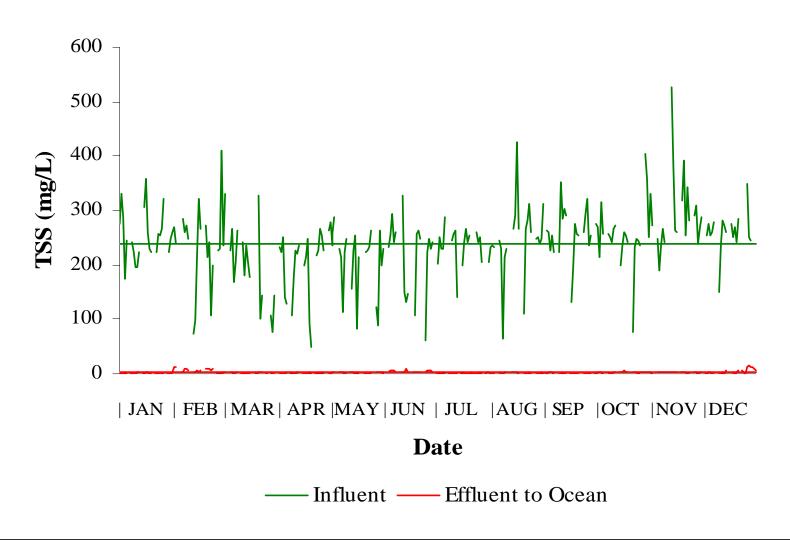
# South Bay Wastewater Reclamation Plant 2006 Daily Flows



# Daily Effluent to Ocean Flows (mgd) - 2006

| Day     | Jan    | Feb   | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    | Oct    | Nov    | Dec    |                |
|---------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|
| 1       | 3.81   | 3.66  | 3.85   | 3.25   | 3.71   | 3.15   | 4.51   | 3.49   | 6.73   | 6.36   | 7.21   | 7.48   |                |
| 2       | 3.37   | 3.65  | 3.64   | 3.25   | 4.17   | 3.77   | 4.48   | 4.11   | 6.82   | 6.59   | 6.92   | 5.69   |                |
| 3       | 3.40   | 3.73  | 3.46   | 3.50   | 4.51   | 4.46   | 4.27   | 4.15   | 6.84   | 6.22   | 6.39   | 7.24   |                |
| 4       | 3.79   | 3.83  | 3.57   | 3.97   | 4.55   | 4.08   | 4.56   | 3.29   | 6.50   | 6.59   | 7.06   | 6.91   |                |
| 5       | 3.63   | 3.57  | 3.60   | 3.60   | 4.11   | 4.44   | 4.25   | 3.89   | 6.88   | 6.17   | 6.90   | 6.94   |                |
| 6       | 3.87   | 3.57  | 3.66   | 3.84   | 4.57   | 4.25   | 4.02   | 3.75   | 6.68   | 6.49   | 6.85   | 7.17   |                |
| 7       | 3.76   | 3.84  | 3.72   | 3.86   | 4.30   | 3.83   | 2.94   | 3.96   | 5.99   | 6.25   | 6.75   | 6.83   |                |
| 8       | 3.79   | 3.71  | 3.85   | 3.86   | 4.34   | 4.44   | 2.80   | 3.81   | 4.82   | 6.10   | 7.27   | 7.04   |                |
| 9       | 3.88   | 3.81  | 3.55   | 3.67   | 4.46   | 4.38   | 3.30   | 3.97   | 5.96   | 6.77   | 6.99   | 6.96   |                |
| 10      | 3.42   | 3.73  | 3.67   | 3.67   | 4.48   | 4.41   | 2.90   | 3.88   | 5.54   | 6.81   | 6.07   | 7.04   |                |
| 11      | 3.29   | 2.22  | 3.66   | 3.83   | 4.52   | 4.33   | 3.42   | 4.63   | 5.95   | 7.19   | 6.96   | 6.68   |                |
| 12      | 3.62   | 3.67  | 3.71   | 3.52   | 4.55   | 5.15   | 4.31   | 4.59   | 5.47   | 6.63   | 6.20   | 7.40   |                |
| 13      | 3.96   | 3.70  | 3.75   | 3.72   | 4.60   | 4.73   | 3.55   | 4.48   | 5.78   | 6.62   | 6.63   | 6.55   |                |
| 14      | 3.61   | 3.67  | 3.67   | 3.72   | 4.56   | 3.29   | 3.52   | 4.86   | 5.74   | 6.76   | 6.76   | 6.69   |                |
| 15      | 3.75   | 3.74  | 3.70   | 3.79   | 4.52   | 4.41   | 4.89   | 5.15   | 5.86   | 7.00   | 6.21   | 6.77   |                |
| 16      | 3.68   | 3.70  | 3.77   | 3.77   | 4.51   | 4.07   | 4.93   | 4.96   | 5.70   | 6.75   | 6.80   | 6.15   |                |
| 18      | 3.78   | 3.69  | 3.66   | 3.78   | 4.34   | 5.66   | 3.54   | 5.92   | 5.83   | 6.80   | 7.11   | 6.30   |                |
| 19      | 3.65   | 3.65  | 3.65   | 3.73   | 4.35   | 7.79   | 3.85   | 5.95   | 5.92   | 7.27   | 7.21   | 6.69   |                |
| 20      | 3.76   | 3.68  | 3.75   | 3.75   | 4.29   | 4.80   | 4.09   | 5.92   | 5.51   | 7.67   | 7.17   | 5.12   |                |
| 21      | 3.78   | 3.68  | 3.85   | 3.85   | 4.34   | 4.24   | 4.34   | 5.89   | 5.72   | 6.44   | 6.27   | 6.01   |                |
| 22      | 3.79   | 3.67  | 3.64   | 3.72   | 4.53   | 4.55   | 4.08   | 5.79   | 5.63   | 6.85   | 6.93   | 4.96   |                |
| 23      | 3.66   | 3.68  | 4.26   | 3.90   | 4.78   | 6.57   | 4.28   | 5.92   | 5.19   | 6.57   | 6.52   | 5.67   |                |
| 24      | 3.84   | 3.48  | 3.59   | 3.81   | 3.24   | 14.03  | 3.89   | 5.97   | 5.67   | 6.57   | 5.26   | 5.28   |                |
| 25      | 3.75   | 3.86  | 3.69   | 3.81   | 3.18   | 11.37  | 3.94   | 5.97   | 5.78   | 7.40   | 6.00   | 6.05   |                |
| 26      | 3.81   | 3.83  | 3.87   | 3.71   | 4.39   | 6.98   | 4.66   | 5.89   | 5.38   | 6.77   | 6.61   | 6.47   |                |
| 27      | 3.75   | 3.72  | 3.89   | 3.90   | 4.33   | 6.15   | 3.72   | 6.00   | 5.79   | 7.29   | 6.85   | 7.23   |                |
| 28      | 3.84   | 3.67  | 3.41   | 3.78   | 4.28   | 4.33   | 3.83   | 6.02   | 5.55   | 6.97   | 6.87   | 7.26   |                |
| 29      | 3.84   |       | 3.74   | 3.88   | 4.26   | 4.50   | 3.80   | 5.97   | 6.52   | 6.26   | 5.93   | 7.43   |                |
| 30      | 4.05   |       | 3.64   | 3.71   | 4.20   | 4.19   | 3.99   | 6.38   | 6.31   | 7.11   | 6.58   | 7.52   |                |
| 31      | 3.71   |       | 3.55   |        | 4.35   |        | 4.46   | 6.81   |        | 7.39   |        | 7.18   | Annual Summary |
| Average | 3.72   | 3.64  | 3.70   | 3.73   | 4.31   | 5.25   | 3.97   | 5.05   | 5.93   | 6.76   | 6.66   | 6.62   | 4.95           |
| Minimum | 3.29   | 2.22  | 3.41   | 3.25   | 3.18   | 3.15   | 2.80   | 3.29   | 4.82   | 6.10   | 5.26   | 4.96   | 2.22           |
| Maximum | 4.05   | 3.86  | 4.26   | 3.97   | 4.78   | 14.03  | 4.93   | 6.81   | 6.88   | 7.67   | 7.27   | 7.52   | 14.03          |
| Total   | 111.64 | 98.41 | 111.02 | 108.15 | 129.32 | 152.35 | 119.12 | 151.37 | 172.06 | 202.66 | 193.28 | 198.71 | 1748           |

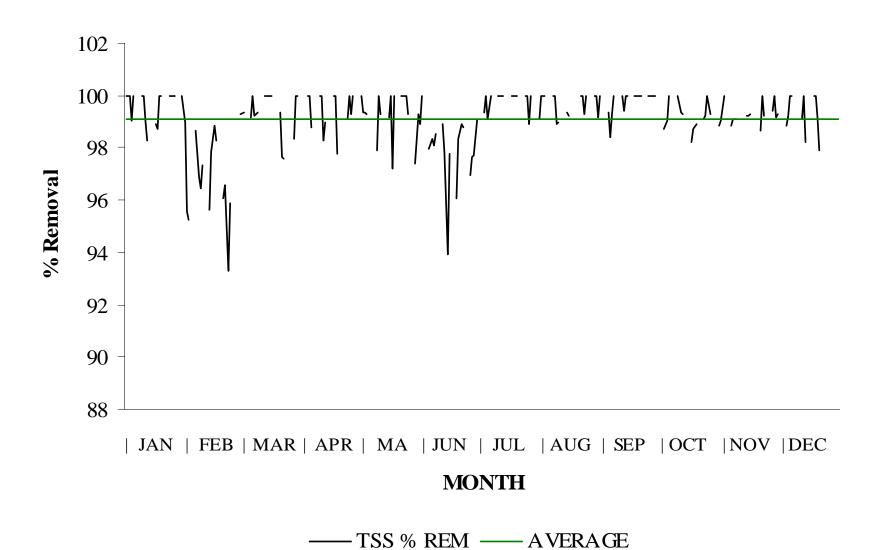
# Daily Influent Flows (mgd) – 2006


| Day     | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    | Oct    | Nov    | Dec    |                |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|
| 1       | 3.98   | 4.20   | 4.17   | 4.24   | 4.31   | 5.05   | 5.09   | 5.75   | 7.98   | 8.15   | 9.04   | 9.02   |                |
| 2       | 4.30   | 4.30   | 4.08   | 4.24   | 4.85   | 5.02   | 5.20   | 5.59   | 7.79   | 8.88   | 8.95   | 8.07   |                |
| 3       | 3.78   | 4.24   | 4.18   | 4.11   | 5.01   | 5.00   | 4.89   | 5.82   | 7.27   | 8.22   | 9.08   | 8.95   |                |
| 4       | 4.33   | 4.17   | 4.09   | 4.26   | 5.86   | 4.68   | 5.09   | 5.71   | 7.69   | 8.51   | 9.13   | 8.87   |                |
| 5       | 4.24   | 4.08   | 4.27   | 4.19   | 3.94   | 4.92   | 4.97   | 5.58   | 7.61   | 8.31   | 9.12   | 9.25   |                |
| 6       | 4.21   | 3.97   | 4.14   | 4.32   | 5.11   | 5.03   | 5.18   | 5.89   | 7.59   | 8.44   | 8.48   | 9.08   |                |
| 7       | 4.29   | 4.28   | 4.14   | 4.30   | 5.06   | 4.88   | 5.04   | 5.71   | 7.80   | 8.58   | 9.00   | 9.09   |                |
| 8       | 4.34   | 4.24   | 4.10   | 4.29   | 5.04   | 4.93   | 5.03   | 5.69   | 7.54   | 8.51   | 8.99   | 8.86   |                |
| 9       | 4.18   | 4.34   | 4.00   | 4.39   | 4.93   | 5.07   | 5.31   | 5.62   | 7.32   | 8.79   | 9.15   | 8.85   |                |
| 10      | 4.23   | 3.95   | 4.27   | 4.22   | 4.96   | 5.08   | 5.03   | 6.15   | 7.53   | 8.96   | 9.34   | 9.04   |                |
| 11      | 3.12   | 2.72   | 4.16   | 4.36   | 4.93   | 4.99   | 5.54   | 6.51   | 7.75   | 8.94   | 8.68   | 8.84   |                |
| 12      | 4.48   | 4.23   | 4.35   | 4.15   | 5.08   | 4.96   | 5.67   | 6.67   | 7.71   | 8.96   | 9.12   | 9.17   |                |
| 13      | 4.31   | 4.21   | 4.19   | 4.21   | 5.19   | 5.05   | 5.74   | 6.74   | 7.80   | 9.11   | 8.64   | 8.92   |                |
| 14      | 4.38   | 4.29   | 4.17   | 4.42   | 5.09   | 4.38   | 5.77   | 6.75   | 7.69   | 9.38   | 8.48   | 8.80   |                |
| 15      | 4.16   | 5.36   | 4.09   | 4.07   | 5.12   | 5.49   | 5.88   | 6.64   | 7.65   | 9.03   | 9.22   | 8.51   |                |
| 16      | 4.56   | 3.14   | 4.26   | 4.31   | 5.12   | 4.39   | 5.77   | 6.50   | 7.78   | 8.31   | 9.11   | 8.13   |                |
| 17      | 3.77   | 4.17   | 4.10   | 4.35   | 4.70   | 5.13   | 5.70   | 6.72   | 7.63   | 9.38   | 9.24   | 8.32   |                |
| 18      | 4.31   | 4.21   | 4.23   | 4.33   | 5.57   | 4.96   | 5.89   | 6.62   | 7.65   | 9.04   | 9.26   | 8.89   |                |
| 19      | 3.93   | 4.36   | 4.36   | 4.12   | 4.57   | 5.01   | 5.73   | 6.92   | 7.68   | 9.18   | 9.27   | 8.27   |                |
| 20      | 4.59   | 4.17   | 4.10   | 4.28   | 5.10   | 5.02   | 5.78   | 6.64   | 7.76   | 9.06   | 9.24   | 7.89   |                |
| 21      | 4.06   | 4.94   | 4.14   | 4.27   | 4.87   | 5.05   | 5.61   | 6.74   | 7.78   | 8.21   | 8.17   | 8.58   |                |
| 22      | 4.16   | 3.37   | 4.02   | 4.28   | 5.10   | 5.16   | 5.85   | 6.79   | 7.82   | 8.84   | 9.25   | 8.15   |                |
| 23      | 4.01   | 4.24   | 4.13   | 4.31   | 5.03   | 4.98   | 5.85   | 6.46   | 7.55   | 8.79   | 7.65   | 7.86   |                |
| 24      | 4.28   | 4.22   | 3.98   | 4.51   | 5.17   | 5.04   | 5.47   | 6.69   | 7.61   | 9.15   | 8.48   | 7.19   |                |
| 25      | 4.31   | 4.12   | 4.29   | 4.06   | 5.02   | 5.02   | 6.03   | 6.86   | 7.93   | 8.86   | 8.69   | 8.20   |                |
| 26      | 4.33   | 4.35   | 4.38   | 4.27   | 5.03   | 5.06   | 5.70   | 6.69   | 7.74   | 9.46   | 8.93   | 8.82   |                |
| 27      | 4.15   | 4.22   | 4.24   | 4.23   | 5.06   | 4.98   | 5.57   | 6.58   | 7.76   | 8.92   | 9.26   | 8.81   |                |
| 28      | 4.18   | 4.13   | 3.89   | 4.33   | 5.06   | 5.17   | 5.72   | 6.84   | 8.62   | 8.38   | 7.80   | 8.75   |                |
| 29      | 4.21   |        | 4.19   | 4.32   | 4.98   | 4.99   | 5.68   | 6.73   | 8.23   | 8.67   | 8.32   | 8.98   |                |
| 30      | 4.26   |        | 4.23   | 4.25   | 5.03   | 5.05   | 5.81   | 7.29   | 8.42   | 9.05   | 8.63   | 8.35   |                |
| 31      | 4.06   |        | 4.14   |        | 4.97   |        | 5.72   | 7.39   |        | 9.15   |        | 8.53   | Annual Summary |
| Average | 4.18   | 4.15   | 4.16   | 4.27   | 5.00   | 4.98   | 5.53   | 6.43   | 7.76   | 8.81   | 8.86   | 8.61   | 6.07           |
| Minimum | 3.12   | 2.72   | 3.89   | 4.06   | 3.94   | 4.38   | 4.89   | 5.58   | 7.27   | 8.15   | 7.65   | 7.19   | 2.72           |
| Maximum | 4.59   | 5.36   | 4.38   | 4.51   | 5.86   | 5.49   | 6.03   | 7.39   | 8.62   | 9.46   | 9.34   | 9.25   | 9.46           |
| Total   | 129.50 | 116.22 | 129.08 | 127.99 | 154.86 | 149.54 | 171.31 | 199.28 | 232.68 | 273.22 | 265.72 | 267.04 | 2216           |

South Metro Interceptor<sup>4</sup> Flows (mgd) 2006

| Days    | Jan   | Feb   | Mar   | Apr   | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   |       |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1       | 0.84  | 0.90  | 0.63  | 0.85  | 0.83  | 0.98  | 0.79  | 0.83  | 1.09  | 1.04  | 1.05  | 1.41  |       |
| 2       | 0.75  | 0.72  | 0.75  | 0.74  | 0.75  | 0.87  | 0.83  | 0.83  | 1.01  | 1.04  | 1.12  | 1.18  |       |
| 3       | 0.81  | 0.95  | 0.86  | 0.75  | 0.76  | 0.88  | 1.02  | 0.86  | 1.02  | 1.09  | 1.29  | 1.41  |       |
| 4       | 0.73  | 0.64  | 0.82  | 0.65  | 0.75  | 0.71  | 0.72  | 1.10  | 1.13  | 1.05  | 1.15  | 1.38  |       |
| 5       | 0.85  | 0.65  | 0.84  | 0.79  | 0.87  | 0.75  | 0.93  | 0.79  | 0.95  | 1.15  | 1.23  | 1.46  |       |
| 6       | 0.68  | 0.64  | 0.83  | 0.86  | 0.69  | 0.93  | 0.97  | 0.98  | 1.11  | 1.17  | 1.22  | 1.35  |       |
| 7       | 0.77  | 0.62  | 0.80  | 0.68  | 0.77  | 0.97  | 0.89  | 0.89  | 1.02  | 1.11  | 1.13  | 1.41  |       |
| 8       | 0.81  | 0.63  | 0.60  | 0.68  | 1.01  | 0.84  | 0.89  | 0.85  | 0.92  | 1.15  | 1.21  | 1.45  |       |
| 9       | 0.62  | 0.83  | 0.77  | 0.84  | 0.79  | 0.76  | 0.93  | 0.96  | 0.91  | 1.14  | 1.18  | 1.46  |       |
| 10      | 0.86  | 0.69  | 0.90  | 0.84  | 0.92  | 0.76  | 0.84  | 0.44  | 1.07  | 0.95  | 1.24  | 1.50  |       |
| 11      | 0.66  | 0.47  | 0.78  | 0.76  | 0.88  | 0.84  | 0.87  | 0.53  | 0.92  | 1.49  | 1.14  | 1.51  |       |
| 12      | 0.77  | 0.64  | 0.78  | 0.58  | 0.88  | 0.84  | 0.88  | 0.79  | 1.06  | 1.23  | 1.24  | 1.54  |       |
| 13      | 0.78  | 0.62  | 0.70  | 0.74  | 0.91  | 0.83  | 0.94  | 0.87  | 0.98  | 1.09  | 1.24  | 1.58  |       |
| 14      | 0.84  | 0.69  | 0.75  | 0.82  | 0.97  | 0.70  | 0.96  | 0.72  | 1.02  | 1.18  | 1.06  | 1.39  |       |
| 15      | 0.87  | 0.65  | 0.67  | 0.73  | 0.95  | 0.75  | 0.97  | 0.97  | 0.91  | 1.00  | 1.33  | 1.45  |       |
| 16      | 0.78  | 0.63  | 0.78  | 0.73  | 0.84  | 0.73  | 0.89  | 1.04  | 0.97  | 1.10  | 1.27  | 1.46  |       |
| 17      | 0.92  | 0.66  | 0.79  | 0.81  | 0.65  | 0.75  | 1.04  | 0.81  | 0.88  | 0.85  | 1.32  | 1.53  |       |
| 18      | 0.74  | 0.65  | 0.71  | 0.74  | 0.91  | 0.77  | 0.87  | 0.98  | 0.90  | 1.08  | 1.29  | 1.51  |       |
| 19      | 0.84  | 0.64  | 0.89  | 0.81  | 0.84  | 0.78  | 0.94  | 1.02  | 1.02  | 0.79  | 1.20  | 1.61  |       |
| 20      | 0.73  | 0.68  | 0.71  | 0.71  | 0.81  | 0.77  | 0.95  | 0.98  | 0.98  | 1.03  | 1.17  | 1.53  |       |
| 21      | 0.79  | 0.65  | 0.60  | 0.64  | 0.96  | 1.00  | 0.93  | 1.05  | 0.87  | 1.18  | 0.71  | 1.62  |       |
| 22      | 0.74  | 0.65  | 0.63  | 0.80  | 0.74  | 0.74  | 0.95  | 1.07  | 1.11  | 1.18  | 1.33  | 1.69  |       |
| 23      | 0.79  | 0.67  | 0.63  | 0.65  | 0.77  | 0.72  | 0.95  | 0.93  | 1.32  | 1.11  | 1.29  | 1.47  |       |
| 24      | 0.72  | 0.82  | 0.71  | 0.75  | 0.79  | 0.72  | 0.94  | 0.93  | 0.98  | 1.09  | 1.17  | 1.57  |       |
| 25      | 0.76  | 0.66  | 0.92  | 0.64  | 0.89  | 0.71  | 1.12  | 0.93  | 1.16  | 1.12  | 1.62  | 1.67  |       |
| 26      | 0.68  | 0.64  | 0.64  | 0.66  | 0.87  | 1.01  | 0.86  | 0.97  | 0.98  | 1.05  | 1.11  | 1.65  |       |
| 27      | 0.74  | 0.81  | 0.63  | 0.69  | 0.76  | 0.69  | 0.81  | 0.89  | 0.98  | 0.99  | 1.35  | 1.53  |       |
| 28      | 0.68  | 0.90  | 0.69  | 0.87  | 0.84  | 0.74  | 0.92  | 0.90  | 0.78  | 1.13  | 1.19  | 1.60  |       |
| 29      | 0.75  |       | 0.87  | 0.67  | 0.92  | 0.77  | 0.87  | 1.03  | 0.90  | 0.98  | 1.26  | 1.79  |       |
| 30      | 0.65  |       | 0.62  | 0.76  | 0.94  | 1.01  | 0.89  | 1.05  | 1.06  | 1.15  | 1.17  | 1.29  | Annua |
| 31      | 0.70  |       | 0.61  |       | 0.82  | 0.79  | 0.85  | 1.07  |       | 1.07  |       | 1.45  | Summa |
| Average | 0.76  | 0.69  | 0.74  | 0.74  | 0.84  | 0.81  | 0.91  | 0.91  | 1.00  | 1.09  | 1.21  | 1.50  | 0.93  |
| Minimum | 0.62  | 0.47  | 0.60  | 0.58  | 0.65  | 0.69  | 0.72  | 0.44  | 0.78  | 0.79  | 0.71  | 1.18  | 0.44  |
| Maximum | 0.92  | 0.95  | 0.92  | 0.87  | 1.01  | 1.01  | 1.12  | 1.10  | 1.32  | 1.49  | 1.62  | 1.79  | 1.79  |
| Total   | 23.65 | 19.40 | 22.91 | 22.24 | 26.08 | 25.11 | 28.21 | 28.06 | 30.01 | 33.78 | 36.28 | 46.45 | 342   |

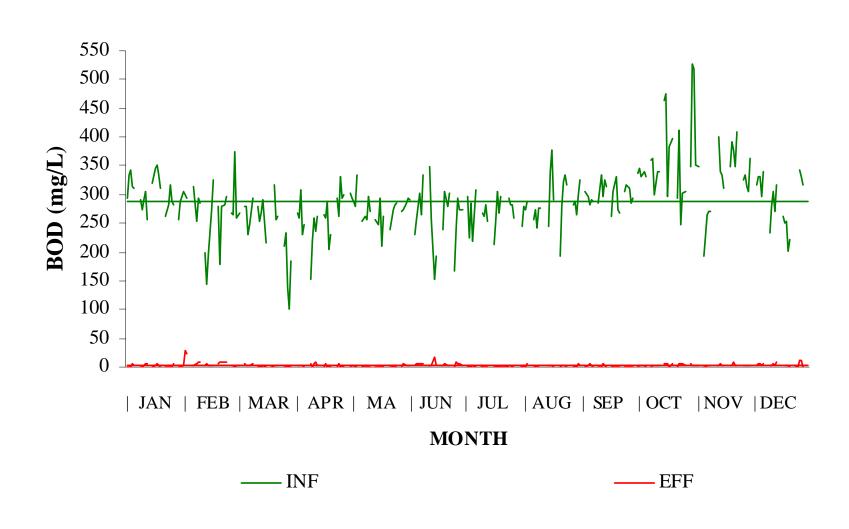
<sup>4</sup> South Metro Interceptor is the point at which any return stream (e.g. removed biosolids) are returned to the Metro System.


# South Bay Wastewater Reclamation Plant 2006 Total Suspended Solids



Daily TSS values – 2006

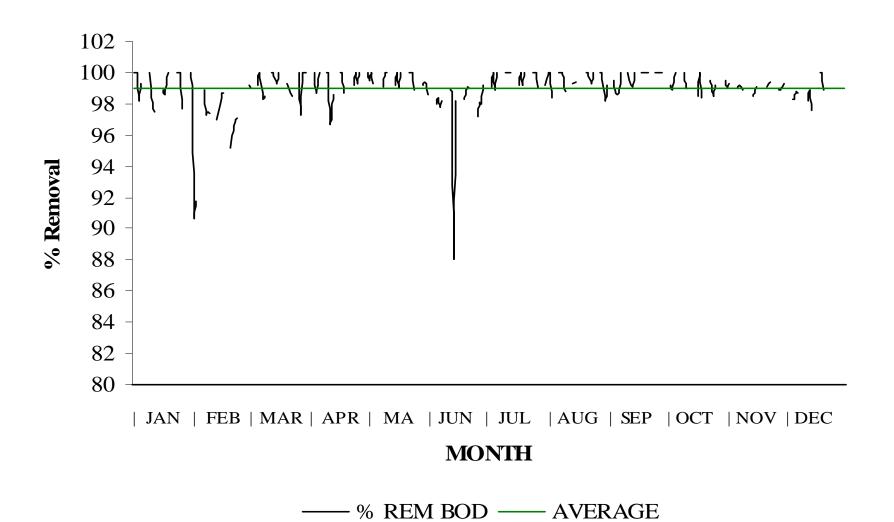
|     |      | Daily 155 valu |      |      |      |     |      |     |      |     |      |      | 2000 |     |      |     |      |     |      | 1   |      |     |      |      |
|-----|------|----------------|------|------|------|-----|------|-----|------|-----|------|------|------|-----|------|-----|------|-----|------|-----|------|-----|------|------|
|     | Ja   |                | Fe   |      | M    | ar  | A    | •   | M    | ay  | Jı   |      | Jı   | ıl  | Αι   |     | Se   | p   | O    |     | No   |     | D    | ec   |
| Day | INF  | EFF            | INF  | EFF  | INF  | EFF | INF  | EFF | INF  | EFF | INF  | EFF  | INF  | EFF | INF  | EFF | INF  | EFF | INF  | EFF | INF  | EFF | INF  | EFF  |
| 1   | 275  | ND             | 268  | 11.8 | 235  | 1.6 |      |     | 278  | ND  | 229  | ND   |      | ND  | 233  | ND  |      |     | 276  | ND  | 330  | 3.1 |      |      |
| 2   | 332  | ND             | 238  | 11.3 | 332  | 2.1 | 232  | ND  | 236  | 1.6 |      |      | 202  | ND  | 237  | ND  |      |     | 270  | 2   | 273  | ND  |      | ND   |
| 3   | 287  | ND             |      |      |      |     | 222  | ND  | 258  | 1.6 |      |      | 250  | 1.7 | 233  | ND  | 262  | ND  | 214  | 2.7 |      |     | 253  | ND   |
| 4   | 175  | 1.7            |      |      |      |     | 252  | ND  | 287  | 2   | 232  | 4    | 231  | ND  |      |     | 259  | 1.6 | 316  | 3.1 |      |     | 277  | 3.2  |
| 5   | 245  | ND             |      | 3.75 | 226  | 2.8 | 142  | ND  |      |     | 253  | 5.1  | 229  | 2.1 |      |     | 228  | 3.7 | 258  | ND  | 248  | 1.7 | 254  | 1.9  |
| 6   |      |                | 285  | 3.9  | 267  | 2.2 | 130  | 1.6 |      |     | 293  | 4.8  | 289  | ND  | 244  | 1.9 | 255  | 1.8 |      |     | 189  | 2.2 | 260  | ND   |
| 7   |      |                | 259  | 8    | 169  | ND  |      |     | 231  | 2.1 | 243  | 4.7  |      |     | 229  | ND  | 223  | ND  |      |     | 235  | 2.1 | 280  | ND   |
| 8   | 241  | ND             | 271  | 9.6  | 205  | 1.6 |      | ND  | 213  | 3.2 | 260  | 3.9  |      | ND  | 63.5 | ND  |      |     | 258  | 1.7 | 265  | 2.4 |      |      |
| 9   | 222  | ND             | 249  | 6.6  | 264  | 1.7 | 108  | 2.6 | 113  | 2.4 |      |      |      | ND  | 215  | 2.4 |      |     | 251  | ND  | 242  | 2.2 |      |      |
| 10  | 195  | ND             |      |      |      |     | 176  | ND  | 222  |     |      |      | 245  | ND  | 229  | 2.3 | 222  | ND  | 241  | ND  |      | 2.7 | 149  | ND   |
| 11  | 196  | 1.9            |      |      |      | ND  | 227  | ND  | 248  | 1.8 |      | 2.2  | 256  | ND  |      |     | 353  | ND  | 267  | 1.8 |      | 3.1 | 237  | ND   |
| 12  | 224  | 3.8            | 73   | 4    | 243  | ND  | 219  | 3.8 |      |     | 328  | 3.6  | 262  | ND  |      |     | 285  | 1.6 | 273  | 2   |      | 2.2 | 283  | 2.5  |
| 13  |      |                | 99   | 4.31 | 181  | ND  | 237  | 2.5 |      | 2   | 150  | 3.2  | 142  | ND  |      | 3   | 304  | ND  |      |     | 528  | 3.5 | 273  | ND   |
| 14  |      | 2.55           | 218  | 4.73 | 237  | ND  |      |     | 157  | 2.2 | 132  | 8    |      |     | 267  | 1.8 | 291  | ND  |      | 2.8 | 383  | 2.9 | 260  | 4.7  |
| 15  | 305  | ND             | 320  | 3.6  | 204  | ND  |      | ND  | 228  | 1.9 | 148  | 3.3  |      |     | 290  | 2.2 |      |     | 200  | 2.6 | 264  | 2.1 |      |      |
| 16  | 357  | 3.8            | 265  | 4.62 | 178  | ND  | 200  | ND  | 254  | ND  |      |      | 198  | 1.6 | 424  | 2.5 |      | ND  | 237  | 2.1 | 260  | 1.9 |      |      |
| 17  | 259  | 3.3            |      |      |      |     | 214  | ND  | 82.7 | 2.3 |      |      | 242  | ND  | 265  | ND  | 132  | ND  | 261  | 4.6 |      |     | 274  | ND   |
| 18  | 229  | ND             |      |      |      |     | 247  | ND  | 215  | ND  |      | 3.7  | 266  | ND  |      |     | 197  | ND  | 253  | 3.3 |      | 2.6 | 251  | ND   |
| 19  | 224  | ND             | 272  | 7.8  |      | 2.4 | 93.3 | 2.1 |      |     | 107  | 4.2  | 243  | ND  |      |     | 275  | ND  | 242  | 2.7 | 317  | 2.4 | 269  | ND   |
| 20  |      |                | 213  | 8.33 |      | ND  | 50.4 | ND  |      |     | 256  | 4.3  | 253  | ND  | 110  | ND  | 258  | ND  |      |     | 393  | 1.7 | 243  | 2.2  |
| 21  |      | ND             | 242  | 8.31 | 328  | 2.1 |      |     |      | ND  | 263  | 2.8  |      |     | 267  | ND  | 254  | ND  |      |     | 253  | 3.4 | 285  | 5.9  |
| 22  | 224  | ND             | 108  | 7.23 | 102  | 2.4 |      | ND  | 222  | ND  | 249  | 3    |      |     | 281  | ND  |      |     | 76   | 3.1 | 343  | ND  |      |      |
| 23  | 256  | ND             | 199  | 8.15 | 145  | 3.5 | 217  | ND  | 227  | ND  |      |      |      |     | 311  | 2.2 |      |     | 234  | 2.1 | 283  | 2.2 |      | 6.8  |
| 24  | 255  | ND             |      |      |      |     | 228  | ND  | 232  | ND  |      |      | 260  | ND  | 261  | ND  | 259  | ND  | 248  | 1.9 |      |     |      | 3.1  |
| 25  | 265  | ND             |      | 1.65 |      | ND  | 267  | ND  | 264  | 1.8 | 60.7 | 3.6  | 242  | ND  |      |     | 294  | ND  | 245  | ND  |      |     |      | ND   |
| 26  | 322  | ND             | 228  | ND   | 132  | ND  | 253  | 1.8 |      |     | 223  | 6.86 | 251  | 2.7 |      |     | 321  | ND  | 236  | 1.7 | 291  | 2   | 350  | 13.2 |
| 27  |      |                | 231  | 2.4  |      |     | 228  | ND  |      |     | 247  | 5.75 | 204  | ND  | 248  | ND  | 235  | ND  |      | 2   | 309  | 1.8 | 251  | 15.5 |
| 28  |      | ND             | 409  |      | 107  | 1.8 |      |     | 123  | 1.6 | 230  | 5.2  |      |     | 251  | ND  | 253  | ND  |      | 2.6 | 239  | ND  | 246  | 11.6 |
| 29  | 224  | ND             |      |      | 77   | ND  |      |     | 88   | 2.3 | 83.4 | 2.2  |      |     | 239  | ND  |      |     | 404  | 3.1 | 265  | 2.3 |      | 13   |
| 30  | 248  | ND             |      |      | 144  | ND  | 262  | ND  | 263  | 1.8 |      |      |      | 1.7 | 249  | 2.1 |      | ND  | 357  | 2.1 | 287  | 2   |      | 8.8  |
| 31  | 260  | 2.6            |      |      |      |     |      |     | 198  | 2.2 |      |      | 204  | 1.9 | 311  | ND  |      |     | 251  | 2.9 |      |     | 234  | 6.11 |
| Ave | 253  | 3              | 234  | 6    | 196  | 2   | 203  | 2   | 213  | 2   | 210  | 4    | 234  | 2   | 251  | 2   | 258  | 2   | 259  | 3   | 295  | 2   | 258  | 7    |
| Min | 175  | 2              | 73   | 2    | 77   | 2   | 50   | 2   | 83   | 2   | 61   | 2    | 142  | 2   | 64   | 2   | 132  | 2   | 76   | 2   | 189  | 2   | 149  | 2    |
| Max | 357  | 4              | 409  | 12   | 332  | 4   | 267  | 4   | 287  | 3   | 328  | 8    | 289  | 3   | 424  | 3   | 353  | 4   | 404  | 5   | 528  | 4   | 350  | 16   |
| Tot | 5820 | 20             | 4447 | 120  | 3776 | 24  | 4205 | 14  | 4640 | 33  | 3987 | 84   | 4469 | 12  | 5458 | 20  | 5160 | 9   | 5868 | 53  | 6197 | 53  | 4929 | 99   |
|     |      |                |      |      |      |     |      |     |      |     |      |      |      |     |      |     |      |     |      |     |      |     |      |      |


# South Bay Wastewater Reclamation Plant 2006 % TSS Removal



2006 % TSS Removals

| Day     | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    | Oct    | Nov    | Dec    | _ |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|
| 1       | 100.00 | 95.60  | 99.32  |        | 100.0  | 100.0  |        | 100.0  |        | 100.0  | 99.1   |        | • |
| 2       | 100.00 | 95.25  | 99.37  | 100.00 | 99.3   |        | 100.0  | 100.0  |        | 99.3   | 100.0  |        |   |
| 3       | 100.00 |        |        | 100.00 | 99.4   |        | 99.3   | 100.0  | 100.0  | 98.7   |        | 100.0  |   |
| 4       | 99.03  |        |        | 100.00 | 99.3   | 98.3   | 100.0  |        | 99.4   | 99.0   |        | 98.8   |   |
| 5       | 100.00 |        | 98.76  | 100.00 | _      | 98.0   | 99.1   |        | 98.4   | 100.0  | 99.3   | 99.3   |   |
| 6       |        | 98.63  | 99.18  | 98.77  | _      | 98.4   | 100.0  | 99.2   | 99.3   |        | 98.8   | 100.0  |   |
| 7       |        | 96.91  | 100.00 |        | 99.1   | 98.1   |        | 100.0  | 100.0  |        | 99.1   | 100.0  |   |
| 8       | 100.00 | 96.46  | 99.22  |        | 98.5   | 98.5   |        | 100.0  |        | 99.3   | 99.1   |        |   |
| 9       | 100.00 | 97.35  | 99.36  | 97.59  | 97.9   |        |        | 98.9   |        | 100.0  | 99.1   |        |   |
| 10      |        |        |        | 100.00 | 100.0  |        | 100.0  | 99.0   | 100.0  | 100.0  |        | 100.0  |   |
| 11      | 99.03  |        |        | 100.00 | 99.3   |        | 100.0  |        | 100.0  | 99.3   |        | 100.0  |   |
| 12      |        | 94.52  | 100.00 | 98.26  | _      | 98.9   | 100.0  |        | 99.4   | 99.3   |        | 99.1   |   |
| 13      |        | 95.65  | 100.00 | 98.95  | _      | 97.9   | 100.0  |        | 100.0  |        | 99.3   | 100.0  |   |
| 14      | _      | 97.83  | 100.00 |        | 98.6   | 93.9   |        | 99.3   | 100.0  |        | 99.2   | 98.2   |   |
| 15      |        | 98.88  | 100.00 |        | 99.2   | 97.8   |        | 99.2   |        | 98.7   | 99.2   |        |   |
| 16      |        | 98.26  | 100.00 | 100.00 | 100.0  |        | 99.2   | 99.4   |        | 99.1   | 99.3   |        |   |
| 17      |        |        |        | 100.00 | 97.2   |        | 100.0  | 100.0  | 100.0  | 98.2   |        | 100.0  |   |
| 18      |        |        |        | 100.00 | 100.0  |        | 100.0  |        | 100.0  | 98.7   |        | 100.0  |   |
| 19      |        | 97.13  |        | 97.75  | _      | 96.1   | 100.0  |        | 100.0  | 98.9   | 99.2   | 100.0  |   |
| 20      | _      | 96.09  |        | 100.00 | _      | 98.3   | 100.0  | 100.0  | 100.0  |        | 99.6   | 99.1   |   |
| 21      |        | 96.57  | 99.36  |        | _      | 98.9   |        | 100.0  | 100.0  |        | 98.7   | 97.9   |   |
| 22      |        | 93.31  | 97.65  |        | 100.0  | 98.8   |        | 100.0  |        | 95.9   | 100.0  |        |   |
| 23      |        | 95.90  | 97.59  | 100.00 | 100.0  |        |        | 99.3   |        | 99.1   | 99.2   |        |   |
| 24      | 100.00 |        |        | 99.12  | 100.0  |        | 100.0  | 100.0  | 100.0  | 99.2   |        |        |   |
| 25      |        |        |        | 100.00 | 99.3   | 94.1   | 100.0  |        | 100.0  | 100.0  |        |        |   |
| 26      |        | 100.00 | 100.00 | 99.29  |        | 96.9   | 98.9   |        | 100.0  | 99.3   | 99.3   | 96.2   |   |
| 27      |        | 98.96  |        | 100.00 |        | 97.7   | 100.0  | 100.0  | 100.0  |        | 99.4   | 93.8   |   |
| 28      |        | 100.00 | 98.32  |        | 98.7   | 97.7   |        | 100.0  | 100.0  |        | 100.0  | 95.3   |   |
| 29      | 100.00 |        | 100.00 |        | 97.4   | 99.1   |        | 100.0  |        | 99.2   | 99.1   |        |   |
| 30      | 100.00 |        | 100.00 | 100.00 | 99.3   |        |        | 99.2   |        | 99.4   | 99.3   |        |   |
| 31      | 99.00  |        |        |        | 98.9   |        | 99.1   | 100.0  |        | 98.8   |        | 97.4   |   |
| Average | 99.70  | 97.02  | 99.37  | 99.51  | 99.15  | 97.75  | 99.77  | 99.71  | 99.82  | 99.11  | 99.31  | 98.69  |   |
| Minimum | 98.30  | 93.31  | 97.59  | 97.59  | 97.22  | 93.94  | 98.92  | 98.88  | 98.38  | 95.92  | 98.66  | 93.82  |   |
| Maximum |        | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |   |


# South Bay Wastewater Reclamation Plant 2006 Biochemical Oxygen Demand



Daily BOD values – 2006

|     |      |       | _    |      |      |      | _    |      |      | Jany |       |      | ucs . |       |      |      | _    |      | _    |      |      |      | _    |       |
|-----|------|-------|------|------|------|------|------|------|------|------|-------|------|-------|-------|------|------|------|------|------|------|------|------|------|-------|
|     |      | an    | Fe   |      | Ma   |      |      | pr   | Ma   |      | Jı    |      | Jı    |       | Aı   | •    |      | ep   |      | ct   | No   |      |      | ec    |
| Day | INF  | EFF   | INF  | EFF  | INF  | EFF  | INF  | EFF  | INF  | EFF  | INF   | EFF  | INF   | EFF   | INF  | EFF  | INF  | EFF  | INF  | EFF  | INF  | EFF  | INF  | EFF   |
| 1   | 295  | ND    | 300  | 27.7 | 260  | 2.11 |      |      | 294  | 2.08 | 292   | 4    |       |       | 280  | 3.04 |      |      | 338  | ND   | 352  | 3.46 |      |       |
| 2   | 334  | ND    | 294  | 24.2 | 269  | 2.82 | 267  | 3.06 | 287  | 2.01 |       |      | 298   | ND    | 275  | ND   |      |      | 345  | 2.45 | 348  | 2.34 |      |       |
| 3   | 344  | ND    |      |      |      |      | 260  | 4.08 | 280  | ND   |       |      | 224   | 2.11  | 287  | 4.52 | 305  | ND   | 332  | 3.55 |      |      | 316  | 4.19  |
| 4   | 315  | 5.87  |      |      |      |      | 308  | 2.01 | 334  | 2.23 | 231   | 3.99 | 285   | ND    |      |      | 298  | 2.21 | 340  | 3.93 |      |      | 331  | 5.57  |
| 5   | 312  | 2.16  |      | 3.71 | 280  | 4.73 | 229  | 3    |      |      | 256   | 6.37 | 220   | 2.36  |      |      | 281  | 4.77 | 332  | ND   | 194  | ND   | 332  | 5.56  |
| 6   |      |       | 314  | 3.41 | 279  | 3.75 | 249  | ND   |      |      | 303   | 5.4  | 308   | ND    | 256  | 2.3  | 291  | 3.8  |      |      | 227  | ND   | 298  | 3.63  |
| 7   |      |       | 252  | 6.85 | 231  | 3.46 |      |      | 254  | ND   | 265   | 5.84 |       |       | 275  | ND   | 287  | ND   |      |      | 266  | 2.21 | 340  | 4.42  |
| 8   | 291  | ND    | 294  | 7.33 | 247  | 4.31 |      |      | 262  | 2.45 | 333   | 6.17 |       |       | 243  | ND   |      |      | 360  | ND   | 270  | 2.48 |      |       |
| 9   | 275  | ND    | 286  | 7.5  | 295  | 4.59 | 153  | 4.49 | 255  | ND   |       |      |       | 2.64  | 277  | 2.07 |      |      | 363  | 2.78 | 272  | 2.97 |      |       |
| 10  | 292  | 2.89  |      |      |      |      | 218  | ND   | 298  | ND   |       |      | 267   | ND    | 277  | 3.3  | 285  | ND   | 300  | 2.4  |      |      | 233  | 3.03  |
| 11  | 304  | 6.32  |      |      |      |      | 260  | 4.41 | 272  | ND   |       | 3.73 | 262   | ND    |      |      | 333  | ND   | 339  | 3    |      |      | 280  | 4.03  |
| 12  | 255  | 6.45  | 198  | 3.79 | 278  | ND   | 237  | 7.9  |      |      | 348   | 4.12 | 283   | ND    |      |      | 297  | 6.05 | 339  | 3.39 |      | 2.99 | 304  | 5.59  |
| 13  |      |       | 143  | 4.39 | 252  | 2.24 | 261  | 3.69 |      |      | 255   | 3.53 | 252   | ND    |      | 2.41 | 325  | 2.95 |      |      | 401  | 3    | 271  | 2.9   |
| 14  |      |       | 196  | 4.2  | 268  | ND   |      |      | 256  | ND   | 154   | 18.4 |       |       | 246  | 2.54 | 314  | ND   |      |      | 340  | 5.28 | 318  | 7.6   |
| 15  | 319  | ND    | 273  | 3.47 | 291  | 2.02 |      |      | 247  | ND   | 192   | 3.54 |       | 2.09  | 339  | 3.04 |      |      | 465  | 5.13 | 333  | 4.31 |      |       |
| 16  | 346  | 2.76  | 326  | 4.16 | 216  | ND   | 266  | ND   | 295  | ND   |       |      | 214   | ND    | 376  | 2.78 |      |      | 476  | 5.73 | 312  | 2.8  |      |       |
| 17  | 350  | 5.08  |      |      |      |      | 259  | 4.98 | 211  | 2.13 |       |      | 254   | 2.1   | 291  | ND   | 261  | 2    | 298  | 6.76 |      |      | 263  |       |
| 18  | 335  | 2.02  |      |      |      |      | 287  | ND   | 261  | ND   |       | 3.45 | 304   | ND    |      |      | 304  | ND   | 384  | ND   |      |      | 251  | 3.12  |
| 19  | 312  | ND    | 280  | 7.08 |      | ND   | 204  | 2.59 |      |      | 240   | 2.96 | 268   | 2.3   |      |      | 331  | ND   | 397  | 6.36 | 347  | 3.66 | 252  | 2.64  |
| 20  |      |       | 178  | 8.62 |      | ND   | 230  | ND   |      |      | 304   | 4.76 | 298   | ND    | 192  | ND   | 273  | ND   |      |      | 393  | 3.28 | 203  | 2.29  |
| 21  |      |       | 278  | 9.66 | 317  | 3.01 |      |      |      | 2.16 | 279   | 2.49 |       | ND    | 279  | 2.49 | 267  | ND   |      |      | 376  | 8.11 | 222  | >7.97 |
| 22  | 261  | ND    | 283  | 8.63 | 256  | 3.4  |      |      | 239  | 3.74 | 301   | 3.09 |       | 3.33  | 323  | 2.33 |      |      | 293  | ND   | 349  | 2.64 |      |       |
| 23  | 283  | ND    | 297  | 8.78 | 262  | 3.92 | 295  | ND   | 274  | ND   |       |      |       | ND    | 335  | 2.31 |      |      | 411  | 6.81 | 410  | 2.45 |      |       |
| 24  | 317  | ND    |      |      |      |      | 262  | 4.96 | 281  | ND   |       |      | 293   | 2.03  | 316  | ND   | 305  | ND   | 248  | 5.91 |      |      |      | 3.48  |
| 25  | 288  | ND    |      |      |      |      | 330  | ND   | 284  | 3.22 | 167   | ND   | 282   | 2.5   |      |      | 318  | ND   | 303  | 4.72 |      |      |      | ND    |
| 26  | 282  | 6.64  | 269  | 2.03 | 209  | ND   | 293  | 2.04 |      |      | 240   | 7.97 | 281   | ND    |      |      | 312  | ND   | 306  | 2.47 | 326  | 3.23 | 342  | 10.9  |
| 27  |      |       | 264  | 2.37 | 233  | ND   | 299  | ND   |      |      | 293   | 5.6  | 259   | 2.5   | 281  | ND   | 285  | ND   |      |      | 335  | 3.28 | 331  | 11.7  |
| 28  |      |       | 373  | ND   | 137  | 3.71 |      |      | 270  | ND   | 275   | 5.47 |       |       | 288  | 3.24 | 294  | ND   | 240  | 4.20 | 313  | 3.35 | 316  | >23.9 |
| 29  | 256  | ND    |      |      | 99.6 | ND   | 202  |      | 274  | 4.64 | 275   | 2.34 |       | -     | 266  | ND   |      |      | 348  | 4.39 | 306  | 2.69 |      |       |
| 30  | 288  | ND    |      |      | 183  | ND   | 303  | ND   | 285  | 3.64 |       |      | 244   | 2.94  | 299  | 5.3  |      |      | 526  | 2.75 | 363  | 2.42 | 201  | 10.1  |
| 31  | 306  | 2.6   | 2.50 | _    | 242  |      | 2.50 | _    | 293  | 2.01 | 2 - 2 |      | 244   | ND    | 326  | 2.72 | •••  |      | 518  | 2.5  |      |      | 284  | >12.4 |
| Ave | 303  | _ 2 _ | 268  | 7    | 243  | 2    | 260  | 2    | 273  | 1    | 263   | 5    | 268   | _ 1 _ | 288  | 2    | 298  | 1    | 364  | 3    | 325  | 3    | 289  | 4     |
| Min | 255  | 2     | 143  | 2    | 100  | 2    | 153  | 2    | 211  | 2    | 154   | 2    | 214   | _ 2   | 192  | 2    | 261  | 2    | 248  | 2    | 194  | 2    | 203  | 2     |
| Max | 350  | _ 7 _ | 373  | 28   | 317  | 5    | 330  | 8    | 334  | 5    | 348   | 18   | 308   | _ 3 _ | 376  | 5    | 333  | 6    | 526  | 7    | 410  | 8    | 342  | 12    |
| Tot | 6960 | 43    | 5098 | 148  | 4863 | 44   | 5470 | 47   | 6006 | 30   | 5003  | 103  | 5096  | 27    | 6327 | 44   | 5966 | 22   | 8361 | 75   | 6833 | 67   | 5487 | 81    |

# South Bay Wastewater Reclamation Plant 2006 % BOD Removal



2006 % BOD Removals

| Day     | Jan    | Feb    | Mar    | Apr    | May    | Jun    | Jul    | Aug    | Sep    | Oct    | Nov    | Dec    |               |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| 1       | 100.00 | 90.77  | 99.19  |        | 99.3   | 98.6   |        | 98.9   |        | 100.0  | 99.0   |        |               |
| 2       | 100.00 | 91.77  | 98.95  | 98.85  | 99.3   |        | 100.0  | 100.0  |        | 99.3   | 99.3   |        |               |
| 3       | 100.00 |        |        | 98.43  | 100.0  |        | 99.1   | 98.4   | 100.0  | 98.9   |        | 98.7   |               |
| 4       | 98.14  |        |        | 99.35  | 99.3   | 98.3   | 100.0  |        | 99.3   | 98.8   |        | 98.3   |               |
| 5       | 99.31  |        | 98.31  | 98.69  |        | 97.5   | 98.9   |        | 98.3   | 100.0  | 100.0  | 98.3   |               |
| 6       |        | 98.91  | 98.66  | 100.00 |        | 98.2   | 100.0  | 99.1   | 98.7   |        | 100.0  | 98.8   |               |
| 7       |        | 97.28  | 98.50  |        | 100.0  | 97.8   |        | 100.0  | 100.0  |        | 99.2   | 98.7   |               |
| 8       | 100.00 | 97.51  | 98.26  |        | 99.1   | 98.1   |        | 100.0  |        | 100.0  | 99.1   |        |               |
| 9       | 100.00 | 97.38  | 98.44  | 97.07  | 100.0  |        |        | 99.3   |        | 99.2   | 98.9   |        |               |
| 10      | 99.01  |        |        | 100.00 | 100.0  |        | 100.0  | 98.8   | 100.0  | 99.2   |        | 98.7   |               |
| 11      | 97.92  |        |        | 98.30  | 100.0  |        | 100.0  |        | 100.0  | 99.1   |        | 98.6   |               |
| 12      | 97.47  | 98.09  | 100.00 | 96.67  |        | 98.8   | 100.0  |        | 98.0   | 99.0   |        | 98.2   |               |
| 13      |        | 96.93  | 99.11  | 98.59  |        | 98.6   | 100.0  |        | 99.1   |        | 99.3   | 98.9   |               |
| 14      |        | 97.86  | 100.00 |        | 100.0  | 88.1   |        | 99.0   | 100.0  |        | 98.4   | 97.6   |               |
| 15      | 100.00 | 98.73  | 99.31  |        | 100.0  | 98.2   |        | 99.1   |        | 98.9   | 98.7   |        |               |
| 16      | 99.20  | 98.72  | 100.00 | 100.00 | 100.0  |        | 100.0  | 99.3   |        | 98.8   | 99.1   |        |               |
| 17      | 98.55  |        |        | 98.08  | 99.0   |        | 99.2   | 100.0  | 99.2   | 97.7   |        | 100.0  |               |
| 18      | 99.40  |        |        | 100.00 | 100.0  |        | 100.0  |        | 100.0  | 100.0  |        | 98.8   |               |
| 19      | 100.00 | 97.47  |        | 98.73  |        | 98.8   | 99.1   |        | 100.0  | 98.4   | 98.9   | 99.0   |               |
| 20      |        | 95.16  |        | 100.00 |        | 98.4   | 100.0  | 100.0  | 100.0  |        | 99.2   | 98.9   |               |
| 21      |        | 96.53  | 99.05  |        |        | 99.1   |        | 99.1   | 100.0  |        | 97.8   |        |               |
| 22      | 100.00 | 96.95  | 98.67  |        | 98.4   | 99.0   |        | 99.3   |        | 100.0  | 99.2   |        |               |
| 23      | 100.00 | 97.04  | 98.50  | 100.00 | 100.0  |        |        | 99.3   |        | 98.3   | 99.4   |        |               |
| 24      | 100.00 |        |        | 98.11  | 100.0  |        | 99.3   | 100.0  | 100.0  | 97.6   |        |        |               |
| 25      | 100.00 |        |        | 100.00 | 98.9   | 100.0  | 99.1   |        | 100.0  | 98.4   |        |        |               |
| 26      | 97.65  | 99.25  | 100.00 | 99.30  |        | 96.7   | 100.0  |        | 100.0  | 99.2   | 99.0   | 96.8   |               |
| 27      |        | 99.10  | 100.00 | 100.00 |        | 98.1   | 99.0   | 100.0  | 100.0  |        | 99.0   | 96.5   |               |
| 28      |        | 100.00 | 97.29  |        | 100.0  | 98.0   |        | 98.9   | 100.0  |        | 98.9   |        |               |
| 29      | 100.00 |        | 100.00 |        | 98.3   | 99.1   |        | 100.0  |        | 98.7   | 99.1   |        |               |
| 30      | 100.00 |        | 100.00 | 100.00 | 98.7   |        |        | 98.2   |        | 99.5   | 99.3   |        |               |
| 31      | 99.15  |        |        |        | 99.3   |        | 100.0  | 99.2   |        | 99.5   |        |        | Annu<br>Summa |
| Average | 99.38  | 97.13  | 99.11  | 99.06  | 99.53  | 97.86  | 99.67  | 99.35  | 99.63  | 99.08  | 99.10  | 98.41  | 98.9          |
| Minimum | 97.47  | 90.77  | 97.29  | 96.67  | 98.31  | 88.05  | 98.93  | 98.23  | 97.96  | 97.62  | 97.84  | 96.47  | 88.0          |
| Maximum | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.0         |

#### Toxicity Testing: South Bay Water Reclamation Plant 2006

#### INTRODUCTION

The City of San Diego conducted aquatic toxicity tests as required by its National Pollutant Discharge Elimination System permit No. CA0109045, Order No. 2000-129 for the South Bay Water Reclamation Plant (SBWRP). The testing requirement is designed to determine the acute and chronic toxicity of effluent samples collected from the SBWRP. In accordance with the above Order, the City also conducts toxicity tests of combined effluent samples that are collected from the SBWRP and the International Wastewater Treatment Plant (IWTP). This chapter presents summaries and discussion of all toxicity tests conducted in 2006.

Toxicity testing of wastewater effluent measures the bioavailability of toxicants in a complex mixture, accounts for interactions among potential toxicants, and integrates the effects of all constituents. Acute and chronic toxicity tests are characterized by the duration of exposure to a toxicant as well as the adverse effect (measured response) produced as the result of exposure to a toxicant. Acute toxicity testing consists of a short-term exposure period, usually 96 hours or less, and the acute effect refers to mortality of the test organism.

Chronic toxicity testing, in the classic sense, refers to long-term exposure of the test organism to a potential toxicant. This may involve exposing the test organism for its entire reproductive life cycle, which may exceed 12 months for organisms such as fish. In general, chronic tests are inherently more sensitive to toxicants than acute tests in that adverse effects are detected at lower toxicant concentrations. The City of San Diego is required to conduct critical/early life stage chronic tests that are intermediate between the acute and chronic toxicity testing protocols discussed above. These test results serve as short-term estimates of chronic toxicity.

# **MATERIALS & METHODS** Test Material

#### SBWRP Effluent

The acute toxicity tests were conducted monthly in 2006. Twenty-four hour, flow-weighted, effluent composite samples were collected at the SBWRP and stored at 4 °C until test initiation. All tests were initiated within 36 hours of sample collection. Test concentrations were 3.88, 7.75, 15.5, 31.0, and 62.0% (nominal) for the topsmelt and mysid tests. Dilution water for acute toxicity tests (effluent and reference toxicant) was obtained from the Scripps Institution of Oceanography (SIO), filtered, held at 4 °C, and used within 96 hours of collection.

Chronic toxicity testing was also conducted monthly in 2006. The samples consisted of flowweighted, 24-hour composited effluent collected at the SBWRP. Samples were stored at 4 °C and testing was initiated within 36 hours of sample collection. Test concentrations were 0.25, 0.50, 1.0, 2.0 and 4.0% effluent. Dilution water for chronic toxicity tests (effluent and reference toxicant) was collected in the same manner as in the acute toxicity tests. Detailed methodology for all toxicity testing is described in the City Bioassay Lab Quality Assurance Manual (City of San Diego 2000).

# SBWRP/IWTP Combined Effluent

The City also conducted chronic and acute toxicity tests of combined effluent from the SBWRP and IWTP in accordance with the quarterly testing schedule stated in Order No. 2000-129. Composite samples were collected during the same 24-hour sampling period by SBWRP and IWTP personnel at their respective facilities and combined in the laboratory in accordance with a ratio that is proportional to the flow from each plant at the time of the sample collection.

These acute toxicity tests were conducted quarterly in 2006. Samples were stored at 4 °C and testing was initiated within 36 hours of sample collection. Test concentrations were 3.88, 7.75, 15.5, 31.0, and 62.0% (nominal) for the mysid tests. Dilution water for acute toxicity tests (effluent and reference toxicant) was obtained from the Scripps Institution of Oceanography (SIO), filtered, held at 4 °C, and used within 96 hours of collection.

Chronic toxicity testing was also conducted quarterly in 2006. Samples were stored at 4 °C and testing was initiated within 36 hours of sample collection. Test concentrations were 0.25, 0.50, 1.0, 2.0 and 4.0% effluent. Dilution water for chronic toxicity tests (effluent and reference toxicant) was collected in the same manner as in the acute toxicity tests. Detailed methodology for all toxicity testing is described in the City Bioassay Lab Quality Assurance Manual (City of San Diego 2000).

# Acute Bioassays

#### Topsmelt Survival Bioassay

The topsmelt acute bioassay was conducted in accordance with USEPA protocol EPA/ 600/4-90/027F (USEPA 1993). Larval *Atherinops affinis* (9-14 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO), and acclimated to test temperature and salinity for at least 24 hours. Upon test initiation, the topsmelt (10 per replicate) were exposed for 96 hours in a static-renewal system to the effluent exposure series. Dilution water and brine controls were also tested. The test solutions were renewed at 48 hours and the organisms were fed once daily.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. Test concentrations consisted of 56, 100, 180, 320, and 560  $\mu$ g/L copper. Dilution water was obtained from SIO, filtered, held at 4 °C, and used within 96 hours of collection. Upon conclusion of the exposure period, percent survival was recorded. Tests were declared valid if control mortality did not exceed 10%. The data were analyzed using a multiple comparison procedure and point estimation method prescribed by USEPA (1993). ToxCalc software (Tidepool Scientific Software 2002) was used for all statistical analyses.

#### Mysid Survival Bioassay

The mysid acute bioassay was conducted in accordance with USEPA protocol EPA/600/4-90/027F (USEPA 1993). Larval *Mysidopsis bahia* (4-5 days old) were purchased from Aquatic Bio Systems (Fort Collins, CO), and acclimated to test temperature and salinity for at least 24 hours. Upon test initiation, the mysids (10 per replicate) were exposed for 96 hours in a static-renewal system to the effluent exposure series. Dilution water and brine controls were also

tested. The test solutions were renewed at 48 hours and the organisms were fed once daily.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. Test concentrations consisted of 56, 100, 180, 320, and 560  $\mu$ g/L copper. A SIO seawater control was also tested. At the end of the exposure period, percent survival was recorded. Tests were declared valid if control mortality did not exceed 10%. The data were analyzed using a multiple comparison procedure and point estimation method prescribed by USEPA (1993). ToxCalc software (Tidepool Scientific Software 2002) was used for all statistical analyses.

#### Chronic Bioassays

#### Red Abalone Development Bioassay

Chronic bioassays using the red abalone, *Haliotis rufescens*, were conducted in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995). Test organisms were purchased from Cultured Abalone (Goleta, California), and shipped via overnight delivery to the City's toxicology laboratory. Mature male and female abalone were placed in separate natural seawater tanks and held at 15 °C. For each test event, spawning was induced in 6-8 abalones in gender-specific vessels. Eggs and sperm were retained and examined under magnification to ensure good quality. Once deemed acceptable, the sperm stock was used to fertilize the eggs, and a specific quantity of fertilized embryos was added to each test replicate and exposed to the effluent series for 48 hours. A receiving water control was also tested. At the end of the test period, 100 embryos were examined and the number of normally and abnormally developed embryos was recorded.

Simultaneous reference toxicant testing was performed using reagent grade zinc sulfate. The concentrations of zinc in the exposure series were 10, 18, 32, 56, and 100  $\mu$ g/L. A SIO seawater control was also tested.

The percentage of normally developed embryos for each replicate was arcsine square root transformed. The data were analyzed in accordance with "Flowchart for statistical analysis of red abalone *Haliotis rufescens*, development data" (see USEPA 1995). ToxCalc software (Tidepool Scientific Software 2002) was used for all statistical analyses.

#### Kelp Germination and Growth Test

Chronic bioassays using the giant kelp, *Macrocystis pyrifera*, were conducted in accordance with USEPA protocol EPA/600/R-95/136 (USEPA 1995). Kelp zoospores were obtained from the reproductive blades (sporophylls) of adult *Macrocystis* plants, which were collected from the kelp beds near La Jolla, California one day prior to test initiation. The zoospores were exposed in a static system for 48 hours to effluent exposure series.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The concentrations of copper in the exposure series were 5.6, 10, 18, 32, 56, 100, and 180  $\mu$ g/L. A SIO seawater control was also tested. At the end of the exposure period, 100 zoospores from each replicate were examined and the percent germination was recorded. In addition, germ-tube length was measured and recorded for 10 of the germinated zoospores.

The data were analyzed in accordance with "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, germination data" and "Flowchart for statistical analysis of giant kelp, *Macrocystis pyrifera*, growth data" (see USEPA 1995). ToxCalc software (Tidepool Scientific Software 2002) was used for all statistical analyses.

# Topsmelt Survival and Growth Bioassays

Chronic bioassays using the topsmelt (*Atherinops affinis*) were conducted in accordance with EPA/600/R-95/136 (USEPA 1995). Larval topsmelt (9-14 days old) were purchased from a commercial vendor and exposed for seven days in a static-renewal system to 0.25, 0.50, 1.0, 2.0, and 4.0% effluent. The test endpoints are survival and growth (dry biomass). The results are expressed as the NOEC.

Simultaneous reference toxicant testing was performed using reagent grade copper chloride. The concentrations of copper in the exposure series were 32, 56, 100, 180, and 320  $\mu$ g/L. A reference toxicant control consisting of SIO dilution water was also tested. Upon conclusion of the exposure period, percent survival and dry biomass were recorded.

The data were analyzed using ToxCalc (Tidepool ScientificSoftware, 2002) in accordance with the appropriate US EPA flowcharts for statistical analysis of topsmelt survival and growth test data by hypothesis testing and point estimation (USEPA 1995; pp.105-106).

#### **RESULTS & DISCUSSION**

#### Acute Toxicity of SBWRP Effluent

In accordance with Order No. 2000-129, the City conducted a side-by-side acute re-screening study in 2006 to compare the sensitivity of the topsmelt and mysid to SBWRP effluent. Based on the results, the City selected the topsmelt as the most sensitive test organism for subsequent monitoring. All acute topsmelt toxicity tests for SBWRP effluent conducted in 2006 were within NPDES permit compliance limits (Table T.1).

Chronic Toxicity of SBWRP Effluent

In accordance with Order No. 2000-129, the City conducted monthly red abalone bioassays from January through October, 2006. The City also conducted a side-by-side chronic re-screening study in November 2006 using the giant kelp, red abalone, and topsmelt to compare the sensitivity of these test species to SBWRP effluent. Based on the results, the City resumed using the red abalone in December 2006, and will continue using the species for all subsequent monitoring until the next re-screening event. All chronic toxicity tests for SBWRP effluent conducted in 2006 were within NPDES permit compliance limits (Table T.2).

#### Toxicity of SBWRP/IWTP Combined Effluent

The City also conducted chronic and acute bioassays for the SBWRP/IWTP combined effluent samples in accordance with the quarterly testing schedule stated in Order No. 2000-129. Although this combined effluent testing is a requirement of the SBWRP monitoring program, there are no compliance limits for these data (see MRP No. 2000-129, Section V).

In October 2006, the City conducted a side-by-side chronic re-screening study to compare the sensitivity of the giant kelp, red abalone, and topsmelt to the combined effluent. The results were not the same as the results from the previous screening event, which was conducted in 2004. Therefore, the City will conduct two additional side-by-side comparisons in 2007 to ensure proper selection of the most sensitive test organism for subsequent monitoring. The results for all combined effluent bioassays performed in 2006 are summarized in Tables T.3 and T.4.

#### REFERENCES

- City of San Diego. (2000). Quality Assurance Manual for Bioassay Testing. Metropolitan Wastewater Department, Environmental Monitoring and Technical Services Division, San Diego, CA
- Tidepool Scientific Software. (2002). ToxCalc Toxicity Information Management System Database Software
- USEPA. (1993). Methods for Measuring Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fourth Edition. C.I. Weber (ed). Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH. EPA/600/4-90/027F
- USEPA. (1995). Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to West Coast Marine and Estuarine Organisms. Chapman, G.A., D.L. Denton, and J.M. Lazorchak (eds). Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH, EPA/600/R-95/136

**Table T.1**Results of acute toxicity tests of SBWRP effluent conducted during 2006. Data are presented as acute toxic units (TUa). The compliance limit is 3.3 TUa.

| Sample Date       | Topsmelt 96-Hour Survival | Mysid 96-Hour Survival |
|-------------------|---------------------------|------------------------|
| 01/08/2006        |                           | <1.6                   |
| 02/12/2006        | <1.6                      |                        |
| 03/12/2006        | <1.6                      |                        |
| 04/09/2006        | <1.6                      | <1.6                   |
| 05/29/2006        | <1.5                      | <del></del>            |
| 06/11/2006        | <1.5                      | <del></del>            |
| 07/16/2006        | <1.6                      |                        |
| 08/13/2006        | <1.6                      | <del></del>            |
| 09/11/2006        | <1.6                      | <del></del>            |
| 10/22/2006        | <1.5                      |                        |
| 11/05/2006        | <1.6                      |                        |
| 12/10/2006        | <1.6                      |                        |
|                   |                           |                        |
| N                 | 11                        | 2                      |
| No. in compliance | 11                        | 2                      |
| Mean TUa          | <1.6                      | <1.6                   |
|                   |                           |                        |

**Table T.2**Results of chronic toxicity testing of SBWRP effluent conducted during 2006. Data are presented as chronic toxic units (TUc) values. NPDES permit limit is 100 TUc.

| Sample Date       | Red Abalone | Giant K     | elp    | Topsmelt |        |  |
|-------------------|-------------|-------------|--------|----------|--------|--|
|                   | Development | Germination | Growth | Survival | Growth |  |
|                   |             |             |        |          |        |  |
| 01/08/2006        | 25          |             |        |          |        |  |
| 02/07/2006        | 25          |             |        |          |        |  |
| 03/06/2006        | 25          |             |        |          |        |  |
| 04/03/2006        | 25          |             |        |          |        |  |
| 05/09/2006        | 25          |             |        |          |        |  |
| 06/05/2006        | 25          |             |        |          |        |  |
| 07/10/2006        | 25          |             |        |          |        |  |
| 08/08/2006        | 25          |             |        |          |        |  |
| 09/05/2006        | 25          |             |        |          |        |  |
| 10/03/2006        | 25          |             |        |          |        |  |
| 11/13/2006        | 25          | 25          | 25     | 25       | 25     |  |
| 12/04/2006        | 25          |             |        |          |        |  |
|                   |             |             |        |          |        |  |
|                   |             |             |        |          |        |  |
| N                 | 12          | 1           | 1      | 1        | 1      |  |
| No. in compliance | 12          | 1           | 1      | 1        | 1      |  |
| Mean TUc          | 25          | 25          | 25     | 25       | 25     |  |

**Table T.3**Results of acute toxicity tests of SBWRP/IWTP combined effluent samples conducted in 2006. Data are presented as acute toxic units (TUa).

| Sample Date | Mysid 96-Hour Survival |  |  |  |  |  |
|-------------|------------------------|--|--|--|--|--|
| 02/07/2006  | 6.1                    |  |  |  |  |  |
| 05/06/2006  | 5.2                    |  |  |  |  |  |
| 08/08/2006  | 4.5                    |  |  |  |  |  |
| 10/03/2006  | 4.4                    |  |  |  |  |  |

**Table T.4**Results of chronic toxicity tests of SBWRP/IWTP combined effluent samples conducted in 2006. Data are presented as chronic toxicity units (TUc).

| Sample Date | Red Abalone | Giant k     | Kelp   | Topsmelt |        |  |  |
|-------------|-------------|-------------|--------|----------|--------|--|--|
|             | Development | Germination | Growth | Survival | Growth |  |  |
|             |             |             |        |          |        |  |  |
| 02/07/2006  | 100         |             |        |          |        |  |  |
| 05/09/2006  | 50          |             |        |          |        |  |  |
| 08/08/2006  | 100         |             |        |          |        |  |  |
| 10/03/2006  | 50          | 25          | 100    | 25       | 25     |  |  |
|             |             |             |        |          |        |  |  |

